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Introduction

Social surveys are widespread tools used to collect data and insights on people’s
attitudes, behaviors, and characteristics within a population.

Rating data are a common method for representing information from social
surveys, allowing the quantification of opinions and experiences.

Although simple and effective, rating data can introduce uncertainty by not
capturing the complexity of respondents’ opinions.
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Introduction

The complexity arises due to the interplay of cognitive, affective and contextual
factors in the process of answering questions using rating scales.

Hence, rating data encapsulate both the rater’s final response and epistemic
uncertainty. This type of post-sampling uncertainty also coexists with the
uncertainty induced by the sampling process.

Fuzzy numbers can be used to mathematically represent this source of uncer-
tainty as epistemic imprecision (or fuzziness).
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Introduction

To deal with fuzziness and randomness appropriately, we need to:

= Generalize the statistical modeling to accommodate both sources of uncer-
tainty simultaneously
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Introduction

To deal with fuzziness and randomness appropriately, we need to:

= Generalize the statistical modeling to accommodate both sources of uncer-
tainty simultaneously

= Consider that estimators could suffer from excessive variance when epis-
temic fuzzy data are used [Grzegorzewski and Gotawska, 2021]
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Introduction

To deal with fuzziness and randomness appropriately, we need to:

= Generalize the statistical modeling to accommodate both sources of uncer-
tainty simultaneously

= Consider that estimators could suffer from excessive variance when epis-
temic fuzzy data are used [Grzegorzewski and Gotawska, 2021]

= Develop a general and consistent statistical modeling framework to deal with
fuzzy data analysis
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Introduction

Beta-type 1

=
o
o
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Beta-type fuzzy numbers as a general
template for representing continuous
and unimodal fuzzy numbers:

m flexible and parsimonious as they
require two parameters only
{m, s} € [Ib, ub] x Rt (mode and
precision)

m allow for dealing with variables
supported on bounded or
semi-infinite intervals (as usual in
socio-economic research)

m generalize frequently used fuzzy
numbers (triangular, trapezoidal)
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Statement of the problem

Let Yi,..., Y, be n independent continuous RVs and § = (¥, ..., ¥») a sample
of fuzzy observations. The vector y is a blurred realization of y because of
post-sampling or epistemic uncertainty-based processes.

The interest lies in studying fy,,....v, (y; 6y) with the purpose of making inference
on 0, given a fuzzy sample y.

Each fuzzy observation y; consists of its mode and precision {mj, s;} of a Beta-
type fuzzy number.
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A conditional sampling schema

The idea is to use a conditional schema linking the statistics of fuzzy numbers
to fyy,...v,(¥: Oy):

yi ~ fy(y; 0y)

si ~ fs(s; 6s)

mi|yi, Sj ~ fM\S,Y('"? W()’v 5))
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A conditional sampling schema

yi ~ fv(y; 0y)
si ~ fs(s; 6s)

milyi, si ~ fus,y(m; w(y, s))

RV that governs the stochastic (non-fuzzy) sampling process. The parameters
can be expressed as a function of external covariates 8, = g~ *(X/3) as for GLM:s.

The choice of fy(y; 8y) depends on the specific problem one is dealing with (e.g.,
Beta distribution, Logistic distribution, Weibull distribution).

A. Calcagni & P. Grzegorzewski — SMPS 2024 A conditional sampling schema 6/15



A conditional sampling schema

yi ~ fy(y; 6y)
si ~ Ga(s; as, Bs)

milyi, si ~ fys,y (m; w(y, s))

Gamma distribution with a; > 0 and 8; > 0 modeling the precision (or spread)
of the fuzzy number. In the simplest case, s;_|Ly; although it can be generalized
to cope with cases where s; depends on y; or external covariates.
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A conditional sampling schema

yi ~ fv(y; 0y)
si ~ Ga(s; as, Bs)

milyi, si ~ fuys,y(m; w(y, s))

RV for the mode of the fuzzy number as a function of the true unobserved
outcome y; and the spread s;.
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A conditional sampling schema

yi ~ fv(y; 0y)
si ~ Ga(s; as, Bs)

‘ milyi, si ~ fuys,y (m; w(y, s)) ‘

Case 1: y € (Ib, ub), fyys,y(m;w(y,s)) is the 4-parameter Beta distribution

Case 2: y € (0,+400), fys,y(m;w(y,s)) is the Beta prime distribution
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A conditional sampling schema

yi ~ fr(y; 6y) (1)
Sj ~ ga(S; s, 55) (2)
Be4p(m; SiYi,Si — Siy1, Ib, ub), if y; € (/b, ub)
mils;, yi ~ ©)
Bep(m; y; + yisi, si + 2), if yi € (0, +0o0)



A conditional sampling schema

Examples of a Beta-type 1 fuzzy number & masking the (true) uncorrupted realizations y
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Inference on 6,

Inference about 6, involves a kind of deblurring procedure which uses y instead
of the unobserved realizations y.



Inference on 6,

The idea is to plug the hypothesized sampling schema into the estimation pro-
cedure, which naturally leads to the Gibbs sampler-based solution:

For t > 1 do:
(1)

yO ~ 7(ylm,s, 607Y)

eﬁ’t) ~ 7T(0,V|m7 S, y(t))

For large T inference on 6, can be performed by an inspection of the posterior
e (9(1) 9(”)
quence (6,7,...,0y ).
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Inference on 6,

Conditional posterior densities 7w(y|...) and 7w(0y|...) have unknown forms un-
der the proposed sampling schema. Then, hybrid solutions, such as posterior
approximation or the Metropolis within Gibbs could be used to solve the prob-

lem.
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Inference on 6,

Posterior sampling schema

w(y|@y,{m,s}) via a posterior approximation

7(y, Oy[{m,s})

7(0y]y,{m,s}) via MCMC



Inference on 6,

Posterior sampling schema

7(y|@y,{m,s}) via a posterior approximation

= Besp(y; Ao, o — o\, Ib, ub)
= Bep(y; A + Ao, 0 + 2)

(case 1)

(case 2)



Inference on 6,

Posterior sampling schema

7(y|@y,{m,s}) via a posterior approximation

= Besp(y; Ao, — o), Ib, ub) (case 1)
= Bep(y;/\+)\a,a+2) (case 2)

{\, o} found by derivative matching [Miller, 2019]
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Inference on 6,

Posterior sampling schema

w(Oyly, {m,s}) via MCMC

using the Vihola's Robust Adaptive MH algorithm
with a coerced acceptance rate [Vihola, 2012]



Inference on 6,

Simulation studies show the effectiveness of the approximated hybrid Gibbs sam-
pling to accurately estimate model parameters with a good mixing properties.

A. Calcagni & P. Grzegorzewski — SMPS 2024 Inference on 6, 9/15



Inference on 6,

Simulation studies show the effectiveness of the approximated hybrid Gibbs sam-
pling to accurately estimating model parameters with a good mixing property.

= Instead, in the next slides we focus on the ability of the proposed conditional
schema to reproduce already existing fuzzy data (external validation).
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Case studies

Aim: Assessing the capability of the proposed conditional schema to reproduce
fuzzy data y collected externally.

Method: Posterior predictive check [Gelman et al., 1996]
i) Fix the non-fuzzy model fy(y; 0)
ii) Estimate 6 using §

iii) Generate B new instances ¥1,...,¥g using the conditional schema

Measures: Compare observed statistics S(¥) - i.e., centroids, 0-cuts, fuzziness
- with the distribution of the simulated ones through the range and Qs-Q in-
terquartile range.
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Case studies
Dataset 1

Dataset: Sample of n = 69 observations about Reckless Driving Behavior col-
lected using fuzzy indirect rating scales [Calcagni and Lombardi, 2022].

Response variable: Driving Anger Scale (DAS) represented as Beta type-1 fuzzy
numbers.

Non-fuzzy model: fy(y;0) = LogitNorm(y; i, ) with {u,c} € R x RT.
Covariates: None.

MCMC: f(p) = N(;0,100), f(o) = U(;0, 100); s estimated via ML;
No. of samples 1e4, Burn-in 2.5e3, acc. rate 0.3045; No. of predictions B = 5e2.
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Case studies

(C) Fuzziness

(B) 0-cut

(A) Centroid

Prop: 0.94 | 0.55

Prop: 0.97 | 0.54

Prop: 1]0.51
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Case studies
Dataset 2

Dataset: Sample of n = 49 observations about Restaurant Quality collected
using direct fuzzy rating scales [de S3a et al., 2014].

Response variable: Restaurant Quality (QR7) represented as Beta type-1 fuzzy
numbers (converted from triangular/trapezoidal).

Non-fuzzy model: fy(y;0) = Be(y; u, ¢) with {u, ¢} € [0,1]” x RT
i = Iogitfl(x,ﬂ).

Covariates: quality_food, quality_employees (composite indicators from crisp
variables).

MCMC: f(8;) = N(;0,100) (j =1, ..., 4), f(¢) = U(; 0, 100); O5 estimated via ML;
No. of samples 1e4, Burn-in 2.5€3, acc. rate 0.2554; No. of predictions B = 5e2.
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Case studies
Dataset 2

Q1 Median

Mean Q3
Bo 0.89 0.94 0.94 1.00
B1 0.28 0.33 0.33 0.39
By 021 0.27 0.27 0.32
[} 22.36 27.40 29.15 33.92
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Case studies

Dataset 2

(C) Fuzziness

(A) Centroid

Prop: 0.98 | 0.56

Prop:1|0.57

Prop:0.98 | 0.58
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Case studies
Dataset 3

Dataset: Sample of n = 147 observations about Shangai's House Prices col-
lected using fuzzy conversion scales [Zhou et al., 2018].

Response variable: Purchase price represented as Beta type-2 fuzzy numbers
(converted from triangular).

Non-fuzzy model: fy(y;0) = Ga(y; o, B) with {a, B} € Rt x RT
Covariates: None.

MCMC: f(a) = U(; 0, 100), f(B8) = U(; 0, 100); Bs estimated via ML;
No. of samples 1e4, Burn-in 2.5e3, acc. rate 0.2876; No. of predictions B = 5e2.
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Case studies
Dataset 3

Q1 Median Mean Q3
«@ 4.70 5.20 5.21 5.69
B 1.00 1.10 1.10 1.19
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Case studies

Prop: 0.99]0.53

(C) Fuzziness.

Prop: 0.99 | 0.62

r T T T T T 1
050 sE0 020 SK0 OO SO0 00O

Prop: 0.95 | 0.49

(A) Centroid
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Concluding Remarks

¢ Statistical modeling with fuzzy numbers can be of relevant importance in
all those situations involving non-stochastic sources of uncertainty
(e.g., decision uncertainty in answering a social survey)

) A general and consistent statistical modeling framework to deal with
fuzzy data analysis is necessary for practitioners (GLMs-like approach)
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Concluding Remarks

) Statistical modeling with fuzzy numbers can be of relevant importance in
all those situations involving non-stochastic sources of uncertainty
(e.g., decision uncertainty in answering a social survey)

€5 A general and consistent statistical modeling framework to deal with
fuzzy data analysis is necessary for practitioners (GLMs-like approach)

The proposed schema is entirely probabilistically: fuzziness is summarized
into (a few) statistics (e.g., FDA, Network Data Analysis)

The assumption s; L y; can be unrealistic in many circumstances
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