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Introduction
Rating data and fuzzy scaling

Rating data are common when measuring human-based characteristics where
attitudes, motivations, satisfaction, or beliefs are quantified using rating scales.
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Introduction
Rating data and fuzzy scaling

Rating data are common when measuring human-based characteristics where
attitudes, motivations, satisfaction, or beliefs are quantified using rating scales.

A typical example is that of rating the question:

- I am satisfied with my life -

using the graded scale:

Strongly disagree − Disagree − 0 − Agree − Strongly agree
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Introduction
Rating data and fuzzy scaling

Rating data are common when measuring human-based characteristics where
attitudes, motivations, satisfaction, or beliefs are quantified using rating scales.

A typical example is that of rating the question:

- I am satisfied with my current work -

using the graded scale:

Strongly disagree − Disagree − 0 − Agree − Strongly agree

As they involve human raters, rating data are often affected by fuzziness because
of the decision uncertainty that affects the response process.
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Introduction
Rating data and fuzzy scaling

Several methods might be adopted to quantify fuzziness (fuzzy scaling):

direct fuzzy rating [3]

implicit fuzzy rating [1]

deterministic crisp-to-fuzzy conversion systems [7]

statistically-oriented crisp-to-fuzzy conversion systems [8]

Besides their differences, all these approaches aim at quantifying the fuzziness
present in rating data.
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Data
IRTree-based fuzzy numbers

Recently, fuzzy-IRTree has been proposed as a new methodology to represent
as much information as possible from the rating response process [2].

Antonio Calcagǹı et al. A Bayesian beta linear model for fuzzy rating responses

SIS 2022 – June 22, 2022 Data 4/14



Data
IRTree-based fuzzy numbers

Recently, fuzzy-IRTree has been proposed as a new methodology to represent
as much information as possible from the rating response process [2].

Key idea: The entire response process can be modeled stage-wise by means of
an Item Response Theory tree:

Binary trees + Rasch psychometric model
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Data
IRTree-based fuzzy numbers

Z1

Z2
0

Z4Z3

Strongly disagree Disagree Agree Strongly agree

Fuzziness arises as a result of the tran-
sitions probabilities estimated by the
IRTree (i.e., the easier the transition, the
lesser the fuzziness).
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Data
IRTree-based fuzzy numbers
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Fuzziness arises as a result of the tran-
sitions probabilities estimated by the
IRTree (i.e., the easier the transition, the
lesser the fuzziness).

An example of rating response with low
degree of fuzziness.
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Data
IRTree-based fuzzy numbers
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Fuzziness arises as a result of the tran-
sitions probabilities estimated by the
IRTree (i.e., the easier the transition, the
lesser the fuzziness).

An example of rating response with low
degree of fuzziness.

An example of rating response with high
degree of fuzziness.
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Data
IRTree-based fuzzy numbers
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Fuzzy numbers are derived from the estimated
parameters of the IRTree model. Further details
in [2].

Several choices are available to this purpose.
Beta fuzzy numbers are a good candidate in
terms of flexibility and simplicity:

ξỹij (y) =
1

C
ymij sij (1− y)sij−sijmij mij ∈ (0, 1) sij ∈ R+
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Beta linear model
Definition

For a non-fuzzy collection of i.i.d. (0, 1)-realizations y = (y1, . . . , yn), the Beta
density is as follows:

fY(y;µ,φ) =
n∏

i=1

Γ(φi )

Γ(φiµi )Γ(φi − µiφi )
y

(µiφi−1)
i (1− yi )

(φi−µiφi−1)

where

µ = (1 + exp(Xβ))−1 and φ = exp(Zγ)

where µ ∈ (0, 1)n is the n × 1 vector of location parameters and φ ∈ (0,∞)n

the n × 1 vector of precision parameters, which have been linearly expanded to
account for covariates Xn×p and Zn×q.
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Beta linear model
Parameter estimation

Model parameters: θ ∈ {β,γ} ∈ Rp × Rq

To sample from the posterior density of the model parameters f (β,γ), an adap-
tive Metropolis-Hastings algorithm has been used [5], with the transition den-
sities of the MCMCs being defined as:

q(θ(t)|θ(t−1)) = N (;θ(t−1),Σ(t))

The acceptance ratio of the sampler is:

α(t) =
L̃(θ(t);m, s) q(θ(t−1)|θ(t)) f (θ(t))

L̃(θ(t−1);m, s) q(θ(t)|θ(t−1)) f (θ(t−1))

where f (θ) is a prior density ascribed to the model parameters.
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Beta linear model
Parameter estimation

Since non-fuzzy realizations y are thought as unobserved random quantities, in
this case the likelihood function is as follows [4]:

L̃(θ(t);m, s) =
n∏

i=1

∫ 1

0

ξỹi (y ;mi , si )
Γ(φi )y

(µiφi−1)(1− y)(φi−µiφi−1)

Γ(φiµi )Γ(φi − µiφi )
dy

where

ξỹ(y;m, s) =
n∏

i=1

ξỹi (y ;mi , si )

follows from the non-interactive assumption of fuzzy observations.
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Case study
Predictors of sexual intimacy

Aim: Investigate predictors of self-report (fuzzy) sexual intimacy [6].

Sample: n = 450 participants from Flanders (73% female, mean age 32.9 years,
mean relationship length 7.68 years).

Predictors: (i) perceived partner responsiveness, (ii) sexual desire, (iii) avoidant
attachment score.

7-point rating scales from 1 (“definitely not”) to 7 (“yes, definitely”).
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Case study
Predictors of sexual intimacy

Data analysis: Three additive Beta linear models M1-M3 have been defined to
predict sexual intimacy. The models differ in terms of covariates for the term µ
whereas φ = exp(1γ).

For all the models, f (β) = N (β; 0, I10) and f (γ) = N (γ; 0, 3).

Four parallel MCMCs have been run with 20000 samples and 5000 samples for
the burn-in phase.

The final model has been chosen according to the LOO information criterion.
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Case study
Predictors of sexual intimacy

Results

According to the Gelman and Rubin’s convergence diagnostics, all the chains
reached the convergence (i.e., R̂ = 1.00).

Models comparison:

Model Covariates LOO

M1 partner respo, sex desire 873.80

M2 partner respo, sex desire, attach avoid 863.50

M3 partner respo, sex desire, attach avoid,
gender partner

857.00
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Case study
Predictors of sexual intimacy

Results

Posterior parameters densities:
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Case study
Predictors of sexual intimacy

Results

Fitted vs. observed fuzzy data (rectangular sections):
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Conclusions

When coupled with standard probability theory, fuzzy numbers can deal
with different sources of uncertainty in the same statistical model (i.e.,
randomness and imprecision).

With regards to ratings data, fuzzy numbers provide flexible formal
representations which might be used to integrate several information from
the rating process (e.g., final response, decision uncertainty).
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