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Categorical data in factor models
Introduction

Studies with multivariate data often involve different types of variables (e.g.,
continuous, ordinal, nominal).

Psychology, and more generally social sciences, often work with categorical
ordered or unordered variables. Examples include rating scores, gender,
counts.

Working with categorical variables usually requires appropriate statistical
models, such as Generalized Linear Models (GLMs) in the case of linear
conditional models.
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Categorical data in factor models
Introduction

In multivariate data analysis, models for categorical data include Structural
Equation Models (SEM), Confirmatory Factor Analysis (CFA), and
Correspondence Analysis (CA).

Some technical tricks are usually adopted to do estimations with categorical
variables:

Latent Variable Approach (Muthen, 1983)

Multistage estimation (e.g., ULS, WLS, DWLS)

Tetrachoric or polychoric approximations of the sample correlation
matrix
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Categorical data in factor models
Introduction

In multivariate data analysis, models for categorical data include Structural
Equation Models (SEM), Confirmatory Factor Analysis (CFA), and
Correspondence Analysis (CA).

Moreover,

computing standard errors and test statistics need some corrections
(e.g., Satorra-Bentler, Satterthwaite)

inference with small samples may be distorted

due to numerical approximations, analysis of large datasets may be
prohibitive
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Categorical data in factor models
Using copulas

To retain as much as possible of the original variable metrics, copulas can
be used to model the dependencies in the multivariate data.

Sklar’s theorem (1959): every multivariate probability distribution
F (Y1, . . . ,Yk ) can be represented by its univariate marginal distributions
F1(Y1), . . . ,Fk (Yk ) and a copula C:

F (Y1, . . . ,Yk ) = C
(
F1(Y1), . . . ,Fk (Yk ) | ξ

)
The dependence structure of the random vector (Y1, . . . ,Yk ) can be modeled
considering marginals and copula separately.
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Categorical data in factor models
Using copulas

Notably, copulas can be used to generate random samples from joint
multivariate distributions of the involved variables.

Several copulas are available (e.g., Gaussian, Archimedean) for many
applications.

Expectations for copulas are often known or approximated via Monte Carlo
integration.
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Categorical data in factor models
Using copulas

Recently, a novel gaussian copula factor model has been proposed for
categorical data.
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Categorical data in factor models
Using copulas

Recently, a novel gaussian copula factor model has been proposed for
categorical data.

Interestingly, the model:

adopts a gaussian copula to represent the dependence structure of
the data

works with both categorical and continuous variables in the same time
(mixed data)

is developed under the Bayesian framework

can address many research questions via analysis of posterior
distributions
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Gaussian copula factor model
A brief review

In the standard gaussian factor model with J variables and K latent
factors, we usually set:

η
(i)
K×1 ∼ N (0K , IK×K )

ε
(i)
J×1 ∼ N (0J ,ΣJ×J )

y (i)
J×1 = ΛJ×K · η(i)

K×1 + ε
(i)
J×1

where Σ is a (possibly) diagonal matrix of residuals.

By marginalizing out η from the joint distribution (η, y), we get marginal
distribution for the observations only:

y(i) ∼ N (0,ΛΛT + Σ)

which indicates that, generally, cov(y) = ΛΛT + Σ is a function of latent
variables.
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Gaussian copula factor model
A brief review

In the gaussian copula factor model (Murray et al., 2013) with J variables
and K latent factors, we instead set:

η
(i)
K×1 ∼ N (0K , IK×K )

z (i)
J×1 ∼ N (ΛJ×K · η(i)

K×1, IJ×J )

yij = F−1
(

Φ

(
zij
/

g(λj )

))
where:

Φ is the univariate standard normal cdf

F−1 are inverse of the margins of the copula

g(λj ) = λ̃j = λj
/√

1 + 1Kλ2
j are scaled loadings
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Gaussian copula factor model
A brief review

In the gaussian copula factor model (Murray et al., 2013) with J variables
and K latent factors, we instead set:

η
(i)
K×1 ∼ N (0K , IK×K )

z (i)
J×1 ∼ N (ΛJ×K · η(i)

K×1, IJ×J )

yij = F−1
(

Φ

(
zij
/

g(λj )

))
Note that:

the correlation c between two variables j ′ and j ′′ is: cj′ j′′ = λ̃T
j′ λ̃j′′

Λ̃ governs the dependence structure separately from the marginal
distributions, i.e. we are not decomposing cov(y)

7 of 17



Gaussian copula factor model
A brief review

The gaussian copula factor model (Murray et al., 2013) is identified by
minimal conditions (sign constraints and fixed zeros in Λ, fixed K ).

Model parameters are represented in terms of (posterior) probability
distributions via Paramater-Expanded (PX) Gibbs Sampler targeting on the
joint posterior density f (Λ̃,N|Y), with N being the matrix of entries ηi .

Prior distribution over Λ̃ is coniugate (Murray et al., 2013): Generalized
(double) Pareto.
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An illustrative example
Assess attachment in children with ECR-RC

Measures: 12 (five-point Likert scale) items of ECR-RC, a short
questionnaire to assess anxious and avoidant attachments in children and
adolescents (Brenning, 2015).

Sample: 259 Italian children (51% girls), mean age = 4 years and 2 months,
SD = 7 months, range = 8.2 - 10.3

Factor structure: two latent factors, anxiety and avoidance.
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An illustrative example
Assess attachment in children with ECR-RC

Variables are represented as ordered categories. Here, some item response
distributions:
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An illustrative example
Assess attachment in children with ECR-RC

We followed Marci et al. (2018) and defined a factorial model with 12 items
and 2 latent factors.

The model was fit using the R package bfa (Murray, 2016).

Variables in the data frame were re-coded as ordered factors, priors on
loadings were modeled as GDP (default choice), MCMC-samples = 10000,
initial burnin = 2500.
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An illustrative example
MCMC Results

Factor: Anxiety
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An illustrative example
MCMC Results

Factor: Avoidance
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An illustrative example
Posterior Results
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Conclusions
Potentials

The model adequately works with ordered and unordered categorical
data

The Bayesian framework:

- overcomes many limits of the standard LS or ML estimation
approaches

- offers a way to do (posterior) data analysis in this type of models

This approach allows a great deal of flexibility in analysing skewed and
non-gaussian variables while modeling the multivariate dependencies
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Conclusions
Limits and developments

The model lacks a way to model:

- the covariances among latent variables cov(η)
- the errors of the measurements model

This approach works like a “smart” principal component analysis where
constraints can be set in the latent structure

Further developments will consider:

testing the model over a detailed simulation scenario

extending the model to modeling covariances among latent factors and
measurement errors
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