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Introduction

The latent linear correlation (a.k.a. polychoric correlation) is a measure of linear
association commonly used when data are arranged in terms of contingency
tables.

LLCs are frequently adopted for categorical data with the purpose of computing
a correlation statistic useful for further analyses (e.g., CFA, SEM).

Unlike other association measures like Goodman-Kruskal's v or Kendall’s 7, the
polychoric measure p uses a latent probabilistic model (e.g., Gaussian) as a
back-end representation onto which the observed joint frequencies N of two
categorical variables X and Y are mapped via the Muthen's thresholds-based
approach [4].
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Introduction

Sometimes contingency tables can show some degree of fuzziness.

This is most common when precise data are classified into imprecise categories
(e.g., images or scenes classification, content analysis, human-based assess-
ments) or, less common, when fuzzy data are classified using either precise or
imprecise categories.

In all these cases, the observed counts N = (m1,..., r,...,nrc) in the classi-
fication grid are no longer natural numbers, but rather fuzzy numbers.
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Introduction

Consequently, estimating the association p between two variables (X, Y) given
a fuzzy contingency table N requires an appropriate generalization.

In this presentation, we will generalize the maximum likelihood-based polychoric
estimator to deal with fuzzy frequency tables. We will focus on estimating p
from a pair (X, Y) of variables (the generalization to a set of J variables is
straightforward).

More technical details and extended results are available in [2].
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Data

Crisp observations and fuzzy categories

To set the problem, let (X, Y) be a pair of real random variables with
{(x,¥)1,--.,(x,y)1} being a sample of length /.

Then, consider two collections of imprecise categories
Cx = (51,..‘,C~r,...,C~R) and Cy = (él,...,éc,...,éc)

through which the observed sample is subsequently classified. The categories
are represented as fuzzy numbers (e.g., trapezoidal) over the support A C R of
(X, Y) via their membership functions, e.g. £z : A — [0,1].

Note: Cx xCy constitute a fuzzy partition of A in the sense of Ruspini [1].
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Data

Fuzzy counts as generalized natural numbers

The process of counting how many observations fall in the joint category (C,,C.)
give raise to a fuzzy set fi. with membership function &;_ : Ng — [0, 1].

This is a generalized natural numbers [6].
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Data

Fuzzy counts as generalized natural numbers

&, is defined following Bodjanova and Kalina's findings [1], which revolve around
the Zadeh’s counting functions [7]:
& (n) = min (uric(n), prec(n))  n=0,1,...
/LFLc(n) = FLC(G,C) possibility that at least n observations are classified in (Cy, Cc)
,U,Fg(j(n) = FGC(E,C) possibility that at most n observations are classified in (Cy, Cc)

where €, is the array for the joint degree of inclusion of the observations w.r.t.

(C.,C.).

Note: The degree of inclusion € ; 5 between two fuzzy sets A and B is computed as:
g = card ( miny &0, Eg(x))/ max (1, card(A))
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Data

An example of fuzzy counts
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Leftmost panel: Crisp observations (dashed black lines) along with two fuzzy categories
G1 and G2. Center/Rightmost panels: Fuzzy counts for both G1 and G2 categories.
Note that in all the panels, fuzzy membership functions are represented along the ver-

tical axes.
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Graphical representation of a 3 x 3 fuzzy contingency table for a

pair of variables.
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Statistical model

Model definition

As for the non-fuzzy case, the standard LLC-based statistical model is mean-zero
unit-variance bivariate Normal with correlation p:

(X7, Y") ~ Na(x, yi p)
which relates to the observed sample through the following condition:

(X;)bS S C~r) A (yl‘Obs S éc) — (X*a Y*) € (fo—lﬂfo] X (T‘-‘Y—l’T‘-‘Y]

fuzzy counting rectangles on the latent domain

with 8 =70 = —ccand 7§ =7 =0 forr=1,...,Rand c=1,...,C.
Parameters to be estimated: 8 = {p, 7%, 7"} € [-1,1] x RF! x R¢~?
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Statistical model

Parameter estimation

The estimation procedure is performed by coupling the fuzzy-EM algorithm [3]
to the Olsson’s two-stage ML procedure [5]. The log-likelihood function is:

In£(6;N) x ZZn,cln/ / fx,v(x,y; p) dxdy

r=1 c=1
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Statistical model

Parameter estimation

The estimation procedure is performed by coupling the fuzzy-EM algorithm [3]
to the Olsson’s two-stage ML procedure [5] on the likelihood function:

I Xt
In£(6;N) Zanln/ / fx,v(x,y; p) dxdy
Trxf1 Tcyfl

r=1 c=1

Given a candidate @’, the algorithm iterates between:

m E-step
Computing Eer [Inﬁ(@; N)|ﬁ] with

A ~ é’ﬁm(")f ,C(”iﬂ'rc(e)) X
Nee = Egl [N,c|n,c] = ZnENo n ZnENO €ﬁ,clzln)fN,C("?7'rc(9)) (fitered counts)

m M-step .
Maximizing In £(6; N) by replacing N with N
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Statistical model

Parameter estimation

The estimation procedure is performed by coupling the fuzzy-EM algorithm [3]
to the Olsson’s two-stage ML procedure [5] for the likelihood function:

LI o
In£(6; N) x Z Z Npe In/ / fx,v(x,y; p) dxdy
(R

r=1 c=1

Given a candidate @', the algorithm iterates between:

m E-step
Computing Eg/ [In L(6; N)|ﬁ] with

fire = EO’ [Nrclﬁrc]

_ Z n gﬁrc (n) fNrC (n; TI'rC(B)) Density conditioned on fuzzy numbers
S | ey (M) (n e (6))
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Simulation study

Design and procedure

A simulation study was run to assess the performances of the fuzzy-EM es-
timator for @ against two naive Olsson’s estimators based on mean-based and
max-based defuzzification of the data.

UNIVERSITA
DEGLI STUDI
DI PADOVA

Simulation study 11/



Simulation study

Design and procedure

m Design
Three factors | € {150,250, 500}, p € {0.15,0.50,0.85}, R = C € {4,6}
were varied in a complete factorial design with B = 5000 samples.
Thresholds 7% = 7Y were defined to be equidistant from -2 to 2.
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Simulation study

Design and procedure

m Design
Three factors | € {150,250, 500}, p € {0.15,0.50,0.85}, R = C € {4,6}
were varied in a complete factorial design with B = 5000 samples.
Thresholds 7% = 7Y were defined to be equidistant from -2 to 2.

m Data generation
Two-step procedure:
Non-fuzzy counts were generated via n,. = I7.(0)

Counts were fuzzified using a probability-possibility transformation
based on discrete Gamma densities:
Ehe = f5,(n; e, Bre) / max fg, (0; ure, Bre) *further details in [2]
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Simulation study

Design and procedure

m Design
Three factors | € {150,250, 500}, p € {0.15,0.50,0.85}, R = C € {4,6}
were varied in a complete factorial design with B = 5000 samples.
Thresholds 7% = 7Y were defined to be equidistant from -2 to 2.

m Data generation
Two-step procedure:
Non-fuzzy counts were generated via n,. = I7.(0)

Counts were fuzzified using a probability-possibility transformation
based on discrete Gamma densities:
&, = fgd(n;arc,ﬁ,c)/ max fg, (N; Qure, Bre) *further details in [2]

m Outcome measures
Bias of estimates and RMSE.

UNIVERSITA
DEGLI STUDI
DI PADOVA

Antonio Calcagni Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021 Simulation study 12/15



Simulation stu

A sketch of the results

fEM dML-max dML-mean

R=C=4 bias rmse bias rmse bias rmse
p=0.15

| =150 0.03401 0.08911 -0.01653 0.11826 -0.04354 0.08824
| =250 0.00455 0.05062 -0.02821 0.08106 -0.04020 0.06766
| =500 0.01047  0.02974 0.00311 0.04180 -0.00743 0.03339
p =0.50

| =150 0.01265 0.07236 -0.08807 0.15014 -0.17694 0.19253
| =250 -0.03699 0.06349 -0.12376 0.15052 -0.17174 0.18119
| =500 -0.00151 0.02688 -0.04673 0.06983 -0.08356 0.09120
p=0.85

| =150 0.00194 0.04504 -0.21865 0.25598 -0.32889 0.33729
| =250 -0.00285 0.02903 -0.17042 0.19816 -0.25843 0.26540
| =500 -0.00104 0.01586 -0.10519 0.12382 -0.16418 0.16884

Results for p in the R = C = 4 case. Note that fEM indicates the fuzzy estimator
whereas dML-max and dML-mean indicate the naive estimators.
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Simulation study

A sketch of the results

Overall, results indicate that the fuzzy estimator fEM outperformed the naive
estimators dML-max and dML-mean in terms of bias and RMSE.

The results for the condition R = C = 6 largely resembled those obtained for
simplest R = C = 4 case.

All the approaches showed similar results in estimating the thresholds {7%, 7"}
(note that the primary interest laid on estimating p).

For extended results, see [2].
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Conclusions

m When data are represented in terms of fuzzy contingency tables, the
standard ML estimators should be generalized to cope with this type of
data.

m The proposed fuzzy-EM estimator works with both crisp
observations/fuzzy categories and fuzzy observations/crisp or fuzzy
categories. In this sense, it encompasses the standard crisp
observations/crisp categories as a special case.

m Real-world applications of the fuzzy-EM estimator for polychoric
correlations (e.g., inter-rater agreement) are further discussed in [2].
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