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Introduction

The latent linear correlation (a.k.a. polychoric correlation) is a measure of linear
association commonly used when data are arranged in terms of contingency
tables.

LLCs are frequently adopted for categorical data with the purpose of computing
a correlation statistic useful for further analyses (e.g., CFA, SEM).

Unlike other association measures like Goodman-Kruskal’s γ or Kendall’s τ , the
polychoric measure ρ uses a latent probabilistic model (e.g., Gaussian) as a
back-end representation onto which the observed joint frequencies N of two
categorical variables X and Y are mapped via the Muthen’s thresholds-based
approach [4].
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Introduction

Sometimes contingency tables can show some degree of fuzziness.

This is most common when precise data are classified into imprecise categories
(e.g., images or scenes classification, content analysis, human-based assess-
ments) or, less common, when fuzzy data are classified using either precise or
imprecise categories.

In all these cases, the observed counts N = (n11, . . . , nrc , . . . , nRC ) in the classi-
fication grid are no longer natural numbers, but rather fuzzy numbers.
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Introduction

Consequently, estimating the association ρ between two variables (X ,Y ) given

a fuzzy contingency table Ñ requires an appropriate generalization.

In this presentation, we will generalize the maximum likelihood-based polychoric
estimator to deal with fuzzy frequency tables. We will focus on estimating ρ
from a pair (X ,Y ) of variables (the generalization to a set of J variables is
straightforward).

More technical details and extended results are available in [2].
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Data
Crisp observations and fuzzy categories

To set the problem, let (X ,Y ) be a pair of real random variables with
{(x , y)1, . . . , (x , y)I} being a sample of length I .

Then, consider two collections of imprecise categories

CX = (C̃1, . . . , C̃r , . . . , C̃R) and CY = (C̃1, . . . , C̃c , . . . , C̃C )

through which the observed sample is subsequently classified. The categories
are represented as fuzzy numbers (e.g., trapezoidal) over the support A ⊂ R of
(X ,Y ) via their membership functions, e.g. ξC̃r

: A→ [0, 1].

Note: CX ×̃CY constitute a fuzzy partition of A in the sense of Ruspini [1].
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Data
Fuzzy counts as generalized natural numbers

The process of counting how many observations fall in the joint category (C̃r , C̃c)
give raise to a fuzzy set ñrc with membership function ξñrc : N0 → [0, 1].

This is a generalized natural numbers [6].
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Data
Fuzzy counts as generalized natural numbers

ξñrc is defined following Bodjanova and Kalina’s findings [1], which revolve around
the Zadeh’s counting functions [7]:

ξñrc (n) = min (µFLC(n), µFGC(n)) n = 0, 1, . . .

µFLC(n) = FLC(εrc) possibility that at least n observations are classified in (C̃r , C̃c )

µFGC(n) = FGC(εrc) possibility that at most n observations are classified in (C̃r , C̃c )

where εrc is the array for the joint degree of inclusion of the observations w.r.t.
(C̃r , C̃c).

Note: The degree of inclusion ε
Ã,B̃

between two fuzzy sets Ã and B̃ is computed as:

ε
Ã,B̃

= card
(

minx ξÃ(x), ξ
B̃

(x)
)/

max
(

1, card(Ã)
)
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Data
An example of fuzzy counts
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Leftmost panel: Crisp observations (dashed black lines) along with two fuzzy categories
G1 and G2. Center/Rightmost panels: Fuzzy counts for both G1 and G2 categories.
Note that in all the panels, fuzzy membership functions are represented along the ver-
tical axes.
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Data
An example of fuzzy contingency table
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Graphical representation of a 3 × 3 fuzzy contingency table for a
pair of variables.
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Statistical model
Model definition

As for the non-fuzzy case, the standard LLC-based statistical model is mean-zero
unit-variance bivariate Normal with correlation ρ:

(X ∗,Y ∗) ∼ N2(x , y ; ρ)

which relates to the observed sample through the following condition:

(xobs
i ∈ C̃r ) ∧ (y obs

i ∈ C̃c)︸ ︷︷ ︸
fuzzy counting

⇐⇒ (X ∗,Y ∗) ∈ (τXr−1, τ
X
r ]× (τYc−1, τ

Y
c ]︸ ︷︷ ︸

rectangles on the latent domain

with τX0 = τY0 = −∞ and τXR = τYC =∞ for r = 1, . . . ,R and c = 1, . . . ,C .

Parameters to be estimated: θ = {ρ, τX , τY } ∈ [−1, 1]× RR−1 × RC−1
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Statistical model
Parameter estimation

The estimation procedure is performed by coupling the fuzzy-EM algorithm [3]
to the Olsson’s two-stage ML procedure [5]. The log-likelihood function is:

lnL(θ;N) ∝
R∑

r=1

C∑
c=1

nrc ln

∫ τXr

τXr−1

∫ τYc

τYc−1

fX ,Y (x , y ; ρ) dxdy
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Statistical model
Parameter estimation

The estimation procedure is performed by coupling the fuzzy-EM algorithm [3]
to the Olsson’s two-stage ML procedure [5] on the likelihood function:

lnL(θ;N) ∝
R∑

r=1

C∑
c=1

nrc ln

∫ τXr

τXr−1

∫ τYc

τYc−1

fX ,Y (x , y ; ρ) dxdy

Given a candidate θ′, the algorithm iterates between:

E-step

Computing Eθ′

[
lnL(θ;N)|Ñ

]
with

n̂rc = Eθ′ [Nrc |ñrc ] =
∑

n∈N0
n

ξñrc (n)fNrc (n;πrc (θ))∑
n∈N0

ξñrc (n)fNrc (n;πrc (θ))
(fitered counts)

M-step
Maximizing lnL(θ;N) by replacing N with N̂
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Statistical model
Parameter estimation

The estimation procedure is performed by coupling the fuzzy-EM algorithm [3]
to the Olsson’s two-stage ML procedure [5] for the likelihood function:

lnL(θ;N) ∝
R∑

r=1

C∑
c=1

nrc ln

∫ τXr

τXr−1

∫ τYc

τYc−1

fX ,Y (x , y ; ρ) dxdy

Given a candidate θ′, the algorithm iterates between:

E-step

Computing Eθ′

[
lnL(θ;N)|Ñ

]
with

n̂rc = Eθ′ [Nrc |ñrc ]

=
∑
n∈N0

n
ξñrc (n)fNrc (n;πrc(θ))∑

n∈N0
ξñrc (n)fNrc (n;πrc(θ))

Density conditioned on fuzzy numbers←−−−−−−−−−−−−−−−−−−−−

fNrc (n;πrc (θ)) = Bin(n;πrc (θ))
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Simulation study
Design and procedure

A simulation study was run to assess the performances of the fuzzy-EM es-
timator for θ against two naive Olsson’s estimators based on mean-based and
max-based defuzzification of the data.
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Simulation study
Design and procedure

Design
Three factors I ∈ {150, 250, 500}, ρ ∈ {0.15, 0.50, 0.85}, R = C ∈ {4, 6}
were varied in a complete factorial design with B = 5000 samples.
Thresholds τX = τY were defined to be equidistant from -2 to 2.
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Simulation study
Design and procedure

Design
Three factors I ∈ {150, 250, 500}, ρ ∈ {0.15, 0.50, 0.85}, R = C ∈ {4, 6}
were varied in a complete factorial design with B = 5000 samples.
Thresholds τX = τY were defined to be equidistant from -2 to 2.

Data generation

Two-step procedure:

1 Non-fuzzy counts were generated via nrc = Iπrc(θ)

2 Counts were fuzzified using a probability-possibility transformation
based on discrete Gamma densities:
ξñrc = fGd

(n;αrc , βrc)
/

max fGd
(n;αrc , βrc) ∗further details in [2]
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Simulation study
Design and procedure

Design
Three factors I ∈ {150, 250, 500}, ρ ∈ {0.15, 0.50, 0.85}, R = C ∈ {4, 6}
were varied in a complete factorial design with B = 5000 samples.
Thresholds τX = τY were defined to be equidistant from -2 to 2.

Data generation

Two-step procedure:

1 Non-fuzzy counts were generated via nrc = Iπrc(θ)

2 Counts were fuzzified using a probability-possibility transformation
based on discrete Gamma densities:
ξñrc = fGd

(n;αrc , βrc)
/

max fGd
(n;αrc , βrc) ∗further details in [2]

Outcome measures
Bias of estimates and RMSE.
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Simulation study
A sketch of the results

fEM dML-max dML-mean

R = C = 4 bias rmse bias rmse bias rmse

ρ = 0.15

I = 150 0.03401 0.08911 -0.01653 0.11826 -0.04354 0.08824
I = 250 0.00455 0.05062 -0.02821 0.08106 -0.04020 0.06766
I = 500 0.01047 0.02974 0.00311 0.04180 -0.00743 0.03339

ρ = 0.50

I = 150 0.01265 0.07236 -0.08807 0.15014 -0.17694 0.19253
I = 250 -0.03699 0.06349 -0.12376 0.15052 -0.17174 0.18119
I = 500 -0.00151 0.02688 -0.04673 0.06983 -0.08356 0.09120

ρ = 0.85

I = 150 0.00194 0.04504 -0.21865 0.25598 -0.32889 0.33729
I = 250 -0.00285 0.02903 -0.17042 0.19816 -0.25843 0.26540
I = 500 -0.00104 0.01586 -0.10519 0.12382 -0.16418 0.16884

Results for ρ in the R = C = 4 case. Note that fEM indicates the fuzzy estimator
whereas dML-max and dML-mean indicate the naive estimators.

Antonio Calcagǹı Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021 Simulation study 13/15



Simulation study
A sketch of the results

Overall, results indicate that the fuzzy estimator fEM outperformed the naive
estimators dML-max and dML-mean in terms of bias and RMSE.

The results for the condition R = C = 6 largely resembled those obtained for
simplest R = C = 4 case.

All the approaches showed similar results in estimating the thresholds {τX , τY }
(note that the primary interest laid on estimating ρ).

For extended results, see [2].
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Conclusions

When data are represented in terms of fuzzy contingency tables, the
standard ML estimators should be generalized to cope with this type of
data.

The proposed fuzzy-EM estimator works with both crisp
observations/fuzzy categories and fuzzy observations/crisp or fuzzy
categories. In this sense, it encompasses the standard crisp
observations/crisp categories as a special case.

Real-world applications of the fuzzy-EM estimator for polychoric
correlations (e.g., inter-rater agreement) are further discussed in [2].
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