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Antonio Calcagǹı1(B) and Luigi Lombardi2

1 DPSS, University of Padova, Padova, Italy
antonio.calcagni@unipd.it

2 DIPSCO, University of Trento, Trento, Italy

luigi.lombardi@unitn.it

Abstract. In this contribution we provide initial findings to the prob-
lem of modeling fuzzy rating responses in a psychometric modeling con-
text. In particular, we study a probabilistic tree model with the aim of
representing the stage-wise mechanisms of direct fuzzy rating scales. A
Multinomial model coupled with a mixture of Binomial distributions is
adopted to model the parameters of LR-type fuzzy responses whereas a
binary decision tree is used for the stage-wise rating mechanism. Param-
eter estimation is performed via marginal maximum likelihood approach
whereas the characteristics of the proposed model are evaluated by means
of an application to a real dataset.
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1 Introduction

Rating data are ubiquitous across many disciplines that deal with the mea-
surement of human attitudes, opinions, and sociodemographic constructs. In
these cases, as the measurement process involves cognitive actors as the pri-
mary source of information, the collected data are often affected by fuzziness
or imprecision. Fuzziness in rating data has multiple origins, which go from the
semantic aspects of the questions/items being rated to the decision uncertainty
that affects the rater response process [2]. By and large, the differences along
this continuum might reflect the differences between the ontic and epistemic
viewpoint on fuzzy statistics [6]. To give an example of what is intended with
fuzziness as decision uncertainty, consider the case where a rater is presented
with a question/item “I am satisfied with my current work” and a five-point
scale ranging from “strongly disagree” to “strongly agree”. In order to provide a
response - which corresponds to mark one of the five labels/levels of the scale - a
rater behaves according to a sequential process, the first step of which consists in
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the opinion formation stage in which cognitive and affective information about
the item being rated - i.e., job satisfaction - are retrieved and integrated until
the decision stage is triggered (second step). This includes the selection stage,
where the set of response choices is pruned to obtain the final rating response,
for example “strongly agree”. Decision uncertainty arises from the conflicting
demands of the opinion formation stage (first step), which requires the integra-
tion of often conflicting cognitive and affective information (for instance, a work
problem with the boss might increase the probability of answering the item neg-
atively) [10]. Stated in this way, fuzziness does not reflect an ontic property of
the item being rated, rather it originates from the cognitive demands underlying
the response process, namely the epistemic state of the rater.

Over the recent years, a number of fuzzy rating scales have been proposed to
quantify fuzziness from rating data, including both direct/indirect fuzzy rating
scales and fuzzy conversion scales (for an extensive review, see [3]. In addi-
tion, see [12,16,17] for further developments on this topic). In its most typical
implementation, a (direct) fuzzy rating scale allows the rater to provide his/her
response by adopting a stage-wise procedure [8,13]. To exemplify, consider the
following five-point scale: (1) “strongly disagree”, (2) “disagree”, (3) “neither
agree nor disagree”, (4) “agree”, (5) “strongly agree”. First, the rater marks
his/her choice on the scale (e.g., “agree”) and then he/she extends the previous
choice by marking another point both on the left (e.g., “disagree”) and right
(e.g., “strongly agree”) sides. Finally, the marks are integrated to form a trian-
gular fuzzy number where the core of the set is linked to the first mark whereas
the support of the set is linked to the left and right extensions. Figure 1 shows
a graphical representation of such a procedure.

Fig. 1. Example of direct fuzzy rating scale with five-point levels along with the result-
ing triangular fuzzy response.

Fuzzy rating data can be analyzed either by means of standard statistical
approaches or by adopting fuzzy statistical methods devoted to this purpose. In
the first case, fuzzy numbers need to be turned into crisp numbers in advance
through a defuzzification procedure whereas in the second case fuzzy numbers
are used as is. Several fuzzy statistical methods are available nowadays (for a
recent review, see [5]). However, as for many statistical models, they are quite
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general and, in the case of fuzzy rating data, these models do not offer a thorough
formal account of the mechanism underlying the fuzzy rating process.

In this contribution, we introduce a novel statistical model to analyse LR-type
triangular fuzzy data Trg(c, l, r). The aim is to provide a tailor-made statistical
model which mimics the stage-wise response process of direct fuzzy rating scales
as those developed by [8] and [13]. In particular, such a model would be of great
interest for those who are interested in studying the relationships among fuzzy
rating responses and other variables (e.g., covariates) from the perspective of
the mechanisms at the origin of fuzzy responses (i.e., the three-stage response
mechanism). The remainder of this short paper is organized as follows. Section 2
describes the model along with the estimation procedure. Section 3 describes the
results of a real case study used to assess the features of the proposed model.
Finally, Sect. 4 concludes this contribution by providing final remarks and sug-
gestions for future extensions.

2 Model

Let ỹ = ((c1, l1, r1), . . . , (ci, li, ri), . . . , (cI , lI , rI)) be a I × 1 sample of triangu-
lar fuzzy numbers represented using the LR parameterization. In this context,
ci ∈ {1, . . . , M} is the core of the fuzzy number and represents the first step of the
stage-wise rating process, li ∈ {0, . . . , M −1} is the left spread of the fuzzy num-
ber and codifies the second step of the rating process, whereas ri ∈ {0, . . . , M−1}
is the right spread of the fuzzy number and codifies the last step of the rating
process (M is the number of levels of the rating scale). The magnitude of li and
ri quantifies the fuzziness of the rating process. It is straightforward to notice
that the data encapsulate two types of uncertainty, one related to the sampling
mechanism (i.e., randomness) and one related to the response process (i.e., the
decision uncertainty expressed in terms of fuzziness). We assume that fuzziness
results from the interplay among different components such as the characteristics
of the item/question being assessed (e.g., the easiness, with higher values being
associated to less difficult items in terms of response process), the characteristics
of the rater (e.g., his/her ability to respond the item), and further contextual
factors like social desirability, faking or cheating. For the sake of simplicity, as
in the traditional Rasch modeling framework [11], we shall consider the first two
components only, namely the item α ∈ R and the rater’s ability ηi ∈ R. Under
the stage-wise mechanism depicted in Fig. 1, the probability of a fuzzy response
can be factorized as follows:

P(Yi = (c, l, r)|ηi;θ) = P(Ci = c|ηi;θ) (1)

·
[
ξiP(Li = l|Ci, ηi;θ)P(Ri = r|Ci, ηi;θ) (2)

+ (1 − ξi)P(Li = 0|Ci, ηi;θ)P(Ri = 0|Ci, ηi;θ)
]

where (1) indicates the probability model for the first step of the rating pro-
cess, (2) represents the second and third steps of the rating process, θ is a real
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vector of parameters which governs the behavior of the model (to be specified
later), whereas ξ ∈ [0, 1] controls the mixture component of the model. Note
that (i) conditionally on Ci, Li and Ri are independent (i.e., Li |= Ri, for all
i ∈ {1, . . . , I}), (ii) the mixture component (2) allows for disentangling those
situations involving a certain level of decision uncertainty (i.e., ξi > 0) from
those situations with no decision uncertainty (i.e., ξi = 0). In what follows, we
will describe all the terms involved by Eqs. (1)–(2) in more details.

2.1 About the Probabilistic Term (1)

To instantiate the first term of the joint probabilistic model, we use the Rasch-
tree model which is part of the family of IRTrees [1,11]. Among other advantages,
they offer a simple and effective statistical representation of rating responses in
terms of conditional binary trees [1,9]. Figure 2 shows two examples of IRTree
for modeling rating responses.

node1

node2

node3

Y = 1

Y = 2

Y = 4Y = 3

node1

node2
Y = 3

node4node3

Y = 1 Y = 2 Y = 4 Y = 5

Fig. 2. Examples of IRTree models for modeling response processes in rating scales.

More formally, we set:

P(Ci = c|ηi;θ) = Multinom(c†; 1,πy
i ) (1.1)

where c†
i ∈ {0, 1}M is the event Ci = c represented as a Boolean vector via

the indicator function I(C†
i = c). Note that, in light of the mapping between

Multinomial and Categorical random variables [14], the outcomes of Ci can be
rewritten using a dummy vector with M elements, all of which are zero except
for the entry Ci = c. For example, the event Ci = 3 can be rewritten as c† =
(0, 0, 1, 0, 0). The M × 1 vector of probabilities πy

i is defined according to a
user-defined IRTree model as follows:

πy
im =

N∏
n=1

(
exp(ηi + αn)tmn

1 + exp(ηi + αn)

)δmn

m ∈ {1, . . . , M} (1.2)

ηi ∼ N (η;μi, σ
2
η) (1.3)



A Probabilistic Tree Model to Analyze Fuzzy Rating Data 461

where tmn is an entry of the mapping matrix TM×N , which indicate how each
response category (in rows) is associated to each node (in columns) of the tree.
For the right-most tree in Fig. 2, the mapping matrix is as follows:

T5×4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 NA

1 0 1 NA

0 NA NA NA

1 1 NA 0
1 1 NA 1

⎤
⎥⎥⎥⎥⎦

with N = M − 1 being the number of nodes. As tmn ∈ {0, 1}, tmn = 1 indicates
that the m-th category of response involves the node n, tmn = 0 indicates that
the m-th category of response does not involve the node n, whereas tmn = NA

indicates that the m-th category of response is not connected to the n-th node
at all. The term δmn is defined as follows: δmn = 0 if tmn = NA and δmn = 1
otherwise. The rater’s ability ηi is a random quantity from a Normal distribution
with mean μi ∈ R and variance σ2

η ∈ R
+. Usually, μi = 0 for most applications,

although it can be rewritten as a linear combinations of K variables μi = xiβ
to account for the effect of external covariates. Finally, the parameter αn ∈ R

expresses the easiness of choosing the n-node of the tree. In general, we may
have as many α’s as the number of nodes or, more simply, a single α for all the
nodes [1].

2.2 About the Probabilistic Term (2)

The second term of the model is a mixture distribution representing the last
two stages of the fuzzy rating process. Conditioned on the first stage Ci = c,
the final response might be affected by decision uncertainty at some degrees - a
case in which ξi > 0 - or, conversely, it might be free of fuzziness. To exemplify
the idea behind this representation, consider once again the right-most decision
tree in Fig. 2. We expect that a higher degree of decision uncertainty entails a
higher difficulty level to navigate the tree structure, which in turn increases all
the response probabilities πy

i . Conversely, a lower degree of decision uncertainty
implies a lower difficulty to go through the tree nodes, which in turn decreases
the probability to activate contiguous responses. This suggests to use πy

i in the
definition of (2). In particular, we define the mixture probability ξi in terms of
the normalized Shannon entropy:

ξi = −
(

M∑
m=1

πy
im ln πy

im

)/
ln M (2.1)

and set the mixture components to be Binomial as follows:

P(Li = l|Ci, ηi;θ) = Bin(l; Ci − 1, πs
i ) (2.2)

P(Ri = r|Ci, ηi;θ) = Bin(r; M − Ci, 1 − πs
i ) (2.3)

P(Li = 0|Ci, ηi;θ) = Bin(l; Ci − 1, 0) (2.4)
P(Ri = 0|Ci, ηi;θ) = Bin(r; M − Ci, 0) (2.5)
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where (2.4)–(2.5) are degenerate distribution with mass one on the element zero
of the support [4]. The parameter πs

i is the probability to activate lower response
categories and it is defined as follows:

πs
i =

∑
m∈{1,...,M}\Ci

πy
im

/
(1 − πy

i,m=ci
) (2.6)

under the convention that πs
i = 0 if m = ci and where πy

i,m=ci
is the probability of

the current response Ci = c. Note that the normalized Shannon entropy increases
as πy gets uniform and decreases as πy becomes degenerate for a single element
of {1, . . . , M}. This property makes the entropy measure suitable to quantify
varying levels of decision uncertainty in the rating process.

2.3 Sampling Schema

In short, the proposed model can be rewritten in terms of the underlying sam-
pling process as follows:

ηi ∼ N (η;xiβ, σ2
η)

C†
i |ηi ∼ Multinom

(
c†; 1,πy

i (α, ηi)
)

Zi|ηi ∼ Bin
(
z; 1, ξi(α, ηi)

)

Zi = 1

{
Li|Ci, ηi ∼ Bin

(
l;Ci − 1, πs

i (α, ηi)
)

Ri|Ci, ηi ∼ Bin
(
l;M − Ci, 1 − πs

i (α, ηi)
) (3)

Zi = 0

{
Li|Ci, ηi ∼ Bin

(
l;Ci − 1, 0

)

Ri|Ci, ηi ∼ Bin
(
l;M − Ci, 0

)

where Ci = I(C†
i ), πy

i (α, ηi) is defined via Eq. (1.2), ξi(α, ηi) is defined via Eq.
(2.1), whereas πs

i (α, ηi) is defined according to Eq. (2.6).
According to the stage-wise representation of the rating response process,

model (3) is self-consistent in the manner through which the fuzzy data ỹ are
modeled. Indeed, given an IRTree structure according to which the rating process
is supposed to behave, a particular instance of θ = {α,β, σ2

η} gives rise to a
cascade computations from the input to the output {ĉ, l̂, r̂} through the model
equations. As a result, external information in terms of explaining variables or
covariates can be plugged-in to the model through the model parameters only
and there is no way to link them to the outcome variable directly.
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Finally, the probability of a fuzzy response is as follows:

P(Yi =(ci, li, ri)|ηi;θ) = πy
i,m=ci

×
[
ξi

(
ci − 1

li

)(
M − ci

ri

)
(πs

i )
li+M−ci−ri · (1 − πs

i )
ri+ci−li−1

+ (1 − ξi)
(

ci − 1
li

)(
M − ci

ri

)
0li+ri · 1M−ri−li−1

]
(4)

× 1
ση

√
2π

exp
(

− 1
2σ2

η

(ηi − xiβ)2
)

where πy
i,m=ci

indicates the probability of the response Ci = c.

2.4 Parameter Estimation

Model (4) implies the following parameters θ = {α,β, σ2
η} ⊂ R

N × R
K × R+.

Since the model uses a logistic function to determine πy, we can further simplify
the parameter estimation by restricting the parameter space in a subset of reals,
for instance by means of the following constraints: |(α,β)|T1N+K ≤ 5 and ση ∈
(0, 3.5]. They are justified by the simple fact that the logistic curve increases
quickly only in a small subset of its domain. The model parameters can be
estimated by maximizing the marginal likelihood function, which is obtained by
integrating out the random terms η1, . . . , ηI from the full likelihood function [15].
This requires the computation of the following marginal probability distribution:

P(Yi = (ci, li, ri);θ) =

∫

R

P(Yi = (ci, li, ri)|ηi;α)fηi
(η;xiβ, σ2

η) dη

∝
∫

R

πy
i,m=ci

[
ξi

(
(πs

i )
li+M−ci−ri · (1 − πs

i )
ri+ci−li−1

− 0li+ri · 1M−ri−li−1
)

+ 0li+ri · 1M−ri−li−1
]

(5)

× exp
(

− 1
2σ2

η

(ηi − xiβ)2
)

dη

∝
∫

R

h(ci, li, ri,α, ηi) exp
(

− 1
2σ2

η

(ηi − xiβ)2
)

dη

where the integral can be solved numerically via the Gauss-Hermite quadrature.
By the change of variable di = ση

√
2ηi + xiβ, the integral is approximated as

follows:

P(Yi = (ci, li, ri);θ) ∝
∫

R

h(ci, li, ri,α, di) exp
( − 1

2σ2
η

d2i
)

ddi

≈ 1√
π

H∑
h=1

h(ci, li, ri,α, ση

√
2γh + xiβ) ωh (6)
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where γ1, . . . , γH and ω1, . . . , ωH are the nodes and weights of the quadrature to
be computed numerically for a fixed H [7]. Finally, the log-likelihood function:

ln L(θ) ∝
I∑

i=1

ln

(
H∑

h=1

h(ci, li, ri,α, ση

√
2γh + xiβ) ωh

)
(7)

can be maximized numerically via either the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) or the Augmented Lagrangian (AUGLAG) algorithms. Note that in the
first case the variance parameter has to be transformed to lie into the real line
(e.g., via exp function) whereas in the second case the constraints |(α,β)|T1 ≤ 5
and ση ∈ (0, 3.5] can be directly plugged in to the optimization routine.

3 Application

In this section we illustrate the characteristics of the proposed model by means
of an application to a real dataset. In particular, data refers to a survey admin-
istered to n = 69 young drivers in Trentino region (north-est of Italy). Of these,
45% were women with mean age of 18.23 years. All participants were young
drivers with an average of driving experience of 12 months since receipt of their
driver’s license. About 74% of them drove frequently during the week, 26% drove
once a week. Participants were asked to self-assess their reckless-driving behavior
(RDB) along with a short version of the Driving Anger Scale (DAS), adopted to
evaluate the driving anger provoked by someone else’s behaviors. Ratings were
collected using a four-point direct fuzzy rating scale (see Fig. 1). For both scales,
higher categories indicate higher scores on RDB and DAS items, respectively. To
simplify the interpretation of the results, the items of the Driving Anger Scale
were aggregated to form a crisp total score. In the next data analysis, the fuzzy
variable RDB was used as response variable whereas the DAS total score was used
as crisp predictor.

Table 1. Application: models for the RDB fuzzy rating data. Note that model M3 is
the best model according to the lowest BIC criterion.

Model Covariates No. of parameters ln L(θ) BIC

M1: linear tree - 2 -161.15 330.767

M2: linear tree sex 3 -157.855 328.412

M3: linear tree sex, DAS 4 -155.268 327.472

M4: linear tree sex, DAS, sex:DAS 5 -155.253 331.676

M5: nested tree sex, DAS 5 -158.937 339.044
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Table 2. Application: parameter estimation and standard errors for model M3.

Parameter Estimate Std. Error

α –1.248 0.09

βsex 0.408 0.119

βdas 1.284 0.093

ση 0.005 19.947

Three models (M1-M4) with a linear decision tree (see Fig. 2, leftmost panel)
and an additional model (M5) with a nested decision tree structure (see Fig. 2,
rightmost panel) were run on RDB. The models varied in terms of covariates
(see Table 1). In particular, model M1 involved no covariates and a common
α parameter for all the N = 4 nodes of the decision tree. On the contrary,
models M2-M4 differed from M1 just in terms of covariates, with M4 including
the interaction term sex:DAS. Finally, model M5 differed from M3 as this uses a
different decision tree with a nested structure (see Fig. 2, rightmost panel). The
final model was chosen according to the fitting measure BIC = −2 ln L(θ) +
p ln I, with p being the number of parameters implied by the model. The best
model is that achieving the lowest BIC, in this case M3. Table 2 reports the
estimated parameters whereas Figs. 3–4 show the marginal effects for the chosen
model. As it includes the categorical covariate sex, the parameters α codify the
intercept of the model across all the nodes, which in this case is the coefficient
for the level sex=F when DAS=0.

Overall, when DAS=0, participants in the group sex=F showed a stronger
tendency to choose lower response categories (α̂ = −1.248, σα̂ = 0.09) if com-
pared to participants in the group sex=M (β̂sex = 0.408, σβ̂sex

= 0.119). Similarly,
DAS was positively associated to RDB (β̂das = 1.284, σβ̂das

= 0.093) and acted
by increasing the tendency to activate the last nodes of the decision tree (see
Fig. 3, first row). With regards to the parameter ξ, participants in the group
sex=M showed a higher probability to activate the spread components of the
fuzzy response across all the levels of DAS as opposed to participants in the
group sex=F (see Fig. 4). Thus, all in all, the results suggest that driving anger
increased the levels of decision uncertainty, with male participants showing a
larger fuzziness if compared to female participants.
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Fig. 3. Application: marginal effects computed over four reference values of das (das=0,
das=min, das=mean, das=max) and for both sex=M and sex=F. The effects are computed
for the response probability πy (first row) and for the probability to activate a lower
response πs (second row). Note that m = 1, . . . , m = 4 indicate the response categories
of the rating scale.
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Fig. 4. Application: probability ξ to activate the mixture components (marginal effect)
computed as a function of das and for both sex=M and sex=F.

4 Conclusions

In this contribution we have described a new statistical model for fuzzy rating
responses that are collected by means of direct fuzzy rating scales. With the
aim of representing the stage-wise decision process underlying a rating response,
the model revolves around the adoption of a conditional representation where a
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Multinomial tree component is coupled with a mixture of Binomial distributions
to represent the fuzziness of rating responses. A nice advantage of the proposed
method is its ability to deal with LR-type triangular fuzzy data in terms of the
stage-wise mechanisms supposed to drive the unobserved rating response process.
However, as for any statistical model, it has some limitations. In particular, the
current version of the model does not take into account the shape of LR-type
fuzzy numbers and it cannot be used in a multivariate context (i.e., the model
works with a single outcome variable per time). Further investigations might
consider these limitations more explicitly, for instance by means of additional
simulation studies. The results of this contribution should be considered as initial
findings to the problem of analysing fuzzy responses in a psychometric modeling
context.
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