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Abstract
Modeling human ratings data subject to raters’ decision uncertainty is an attrac-
tive problem in applied statistics. In view of the complex interplay between emo-
tion and decision making in rating processes, final raters’ choices seldom reflect the 
true underlying raters’ responses. Rather, they are imprecisely observed in the sense 
that they are subject to a non-random component of uncertainty, namely the deci-
sion uncertainty. The purpose of this article is to illustrate a statistical approach to 
analyse ratings data which integrates both random and non-random components of 
the rating process. In particular, beta fuzzy numbers are used to model raters’ non-
random decision uncertainty and a variable dispersion beta linear model is instead 
adopted to model the random counterpart of rating responses. The main idea is to 
quantify characteristics of latent and non-fuzzy rating responses by means of ran-
dom observations subject to fuzziness. To do so, a fuzzy version of the Expecta-
tion–Maximization algorithm is adopted to both estimate model’s parameters and 
compute their standard errors. Finally, the characteristics of the proposed fuzzy beta 
model are investigated by means of a simulation study as well as two case studies 
from behavioral and social contexts.
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1  Introduction

In social and behavioral research, satisfaction surveys, aptitude and personality 
testing, demographic inquiries, and life quality questionnaires are widespread 
tools to collect data involving subjective evaluations, agreements, and judgments. 
In a typical social survey, a set of questions is administered to a sample of par-
ticipants and they are asked to express the extent of their agreement on bounded 
discrete or continuous rating scales (Aiken 1996; Miller and Salkind 2002). Tra-
ditionally, ratings data have been collected by means of pencil and paper ques-
tionnaires although more flexible implementations, such as online questionnaires, 
have become increasingly popular. More recently, technological advancements 
have fostered the development of new rating tools which offer an accurate way to 
trace the rating process from its beginning to the final rating outcome (Schulte-
Mecklenbeck et  al. 2011). Hence, unlike standard rating tools, these techniques 
allow researchers to collect a richer variety of participants’ data, including tem-
poral unfolding of ratings and decision uncertainty (Calcagnì and Lombardi 
2014; Freeman and Ambady 2010). As several scholars have pointed out, deci-
sion uncertainty can be referred to a subject-specific cognitive component of the 
rating process designed to construct a coherent mental representation of the ques-
tion being rated (Ülkümen et  al. 2016). In this sense, it reflects the subjective 
interplay of decisional and emotional components which contribute to the final 
rating response (Kahneman and Tversky 1982). As such, when appropriately uti-
lized, this source of within-subject heterogeneity can reveal more about ratings 
then standard crisp responses. Interestingly, this type of non-random, systematic 
uncertainty has been extensively studied especially with regards to its effects on 
rating responses (e.g., see Saal et al. 1980). Indeed, it is widely recognized that 
ratings data often suffer from lack of accuracy, for instance because of social 
desirability (Furnham 1986), faking behaviors (Lombardi et al. 2015), personality 
(Muthukumarana and Swartz 2014), response styles (Eid and Zickar 2007), and 
violations of rating rules (Iannario 2015; Preston and Colman 2000; Rabinowitz 
et al. 2019). These issues have not only been recognized as important by applied 
statisticians working with ratings data but also by several researchers working in 
fields like applied econometrics (e.g., see Angel et al. 2019; De Bruin et al. 2011; 
Zafar 2011), metrology (e.g., see Pendrill and Petersson 2016; Pendrill 2014), 
and risk analysis (e.g., see Slovic et al. 2004).

Modeling ratings data is a relevant problem in applied statistics. Commonly 
used methods to handle with discrete or continuous rating data include gener-
alized linear models (GLMs) (McCulloch 2000), beta regression models (Fer-
rari and Cribari-Neto 2004; Migliorati et  al. 2018; Ospina and Ferrari 2012), 
and combination of uniform and shifted binomial (CUBE) models (Golia 2015; 
Piccolo and Simone 2019; Piccolo et  al. 2019). These models typically repre-
sent mean and dispersion components as a linear or non-linear function of some 
external covariates, which are intended to explain the observed heterogeneity of 
the ratings data. Although some of these methods also allow for disentangling 
individual indecision and heterogeneity of responses induced by the presence of 
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subgroups (e.g., CUBE), they are mainly intended to work with data represented 
as a crisp collection of responses and do not account for non-random decision 
components of rating process. The same applies with more general approaches to 
analyse within-subject heterogeneity such as random-effects and errors-in-varia-
bles models (Feng et al. 2018) which do not deal with non-random components 
of uncertainty. As a consequence, decision uncertainty underlying participant’s 
rating process is not formally represented in these models.

In this contribution we propose a novel method for analysing continuous 
bounded ratings data that are characterized by non-random and systematic deci-
sion uncertainty. In particular, we propose a variable dispersion beta linear model 
which is generalized to cope with data contaminated by subjective uncertainty. 
We represent decision uncertainty in the framework of fuzzy data modeling, 
where crisp ratings data are equipped with non-random systematic uncertainty 
via normalized set functions (Couso and Dubois 2014; Kruse and Meyer 1987). 
In this setting, maximum likelihood estimation and inference are carried out 
through the Expectation–Maximization algorithm adapted for the case of fuzzy 
data (Denœux 2011; Su et  al. 2015). It should be stressed that using beta lin-
ear models allows for flexibility in modeling and analysing continuous ratings 
data, while still retaining simplicity in estimates model’s parameters (Algamal 
2019; Canterle and Bayer 2019; Zeileis et  al. 2010). Similarly, despite the fact 
that many formal theories have been proposed to deal with subjective uncer-
tainty (e.g., soft sets, rough sets. See Lin and Cercone 2012; Liu 2010), fuzzy set 
theory offers a good compromise in terms of accuracy and computational costs 
and benefit from a long tradition of works in statistics (e.g., see Buckley 2006; 
Chukhrova and Johannssen 2018; Couso and Dubois 2014; Gebhardt et al. 1998; 
González-Rodríguez et al. 2006).

The remainder of the article is organized as follows. Section 2 briefly describes 
the basic characteristics of fuzzy data together with their interpretation in terms 
of decision uncertainty. Section  3 exposes the variable dispersion fuzzy beta 
model, parameters estimation, and model evaluation. Section  4 reports results 
of a short simulation study performed to evaluate the finite sample properties of 
the fuzzy beta model and the consequences of neglecting decision uncertainty on 
parameters estimation. Section 5 describes an application of the new approach to 
two case studies involving ratings data from risk-taking behaviors (application 1) 
and customer satisfaction (application 2). Finally, Sect.  6 concludes the article 
providing final remarks and suggestions for future extensions. All the materials 
like datasets and R-scripts used throughout the article are available to download 
at https://​github.​com/​antca​lcagni/​fuzzy​ratin​gbeta.

2 � Data representation

In this section we briefly review some concepts and terminology related to fuzzy 
numbers, fuzzy probability, and fuzzy ratings data.

https://github.com/antcalcagni/fuzzyratingbeta
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2.1 � Fuzzy numbers and fuzzy probability

A fuzzy subset Ã of a universal set A is defined by means of its characteristic func-
tion �

Ã
∶A → [0, 1] . It can be easily described as a collection of crisp subsets called �

-sets, i.e. Ã𝛼 = {x ∈ A∶ 𝜉�A(x) > 𝛼} with � ∈ (0, 1] . If the �-sets of Ã are all convex 
sets then Ã is a convex fuzzy set. The support of Ã is Ã0 = {x ∈ A∶ 𝜉�A(x) > 0} and 
the core is the set of all its maximal points, i.e. Ãc = {x ∈ A∶ 𝜉�A(x) = maxy∈A 𝜉�A(y)} . 
In the case maxx∈A �

Ã
(x) = 1 then Ã is a normal fuzzy set. If Ã is a normal and con-

vex subset of ℝ then Ã is a fuzzy number (Buckley 2006). Broadly speaking, fuzzy 
sets can be conceived as subsets of ℝ where their Boolean characteristic function �A(x) , 
∀x ∈ A ⊂ ℝ , has been generalized to the real interval [0, 1]. The class of all normal 
fuzzy numbers is denoted by F(ℝ) . Fuzzy numbers can conveniently be represented 
using parametric models, through which �

Ã
 is represented by means of few real param-

eters. Hence, we can define families of fuzzy numbers indexed by some scalars, such 
as m (mode) and s (spread/precision), which include a number of shapes like triangular, 
trapezoidal, gaussian, and exponential (Buckley 2006). Relevant classes of parametric 
fuzzy numbers are the so-called LR-fuzzy numbers (Dubois and Prade 1978) and their 
generalizations (Calcagnì et al. 2014; Dombi and Jónás 2018). In this setting, a set of 
operators and algebras have also been defined for fuzzy numbers, which extend tradi-
tional calculus to fuzzy numbers as well (Chwastyk and Kosiński 2013). A broader 
class that encompasses a wide range of fuzzy numbers is the so-called beta fuzzy num-
ber (Alimi 2003; Baklouti et al. 2018; Stein 1985):

where xl, xu, a, b ∈ ℝ , with xl and xu being the lower and upper bounds of the set, 
and m the mode of the fuzzy set. This type of fuzzy numbers uses Beta functions to 
approximate many regular shapes such as triangular, trapezoidal or Gaussian. Like-
wise for LR-fuzzy numbers, beta fuzzy numbers can be defined in terms of mode 
m ∈ ℝ and spread/precision s ∈ ℝ

+ parameters. In particular, let xl = 0 and xu = 1 
without loss of generality. Then Eq. (1) can be re-arranged as follows:

with C being a constant ensuring �
Ã
 is still a normal fuzzy set:

(1)
�
Ã
(x) =

(
x − xl

m − xl

)a(
xu − x

xu − m

)b

⋅ �(xl,xu)
(x)

m =
axu + bxl

a + b

(2)
�
Ã
(x) =

1

C
xa−1(1 − x)b−1

a = 1 + ms

b = 1 + s(1 − m)

C =

(
a − 1

a + b − 2

)a−1

⋅

(
1 −

a − 1

a + b − 2

)b−1
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Interestingly, the re-parameterized Beta fuzzy number resembles the shape of Beta 
density distribution written using the PERT representation (Vose 2008). It should 
be noted that, like triangular or trapezoidal fuzzy numbers, also beta fuzzy numbers 
can be adopted to represent rating data variables. Indeed, the beta-like shape is par-
ticularly flexible to modeling some features of bounded rating data, such as asym-
metry and tail flatness (e.g., see Migliorati et al. 2018).

When a probability space is defined over the reals, the probability of a fuzzy set 
ℙ(Ã) can also be defined. Over the years, there have been various attempts to define 
the probability of a fuzzy set in terms of expected value of its membership function 
(Zadeh 1968), conditional probability of prior information (Coletti and Scozzafava 
2004; Singpurwalla and Booker 2004), imprecise probability (Augustin et al. 2014), 
fuzzy numbers (Hesamian and Shams 2017), and likelihood induced by random 
events (Cattaneo 2017). Following the findings of Denœux (2011), in this contribu-
tion we adopt Zadeh’s definition of fuzzy probability (Zadeh 1968). In particular, let 
(ℝ,B,ℙ) be a probability space. Then, ℙ(Ã) is defined as follows:

with �
Ã
 being Borel measurable. In this context, two fuzzy sets Ã and B̃ are said inde-

pendent w.r.t. to ℙ , if ℙ(ÃB̃) = ℙ(Ã) ⋅ ℙ(B̃) , with the fuzzy product being defined as 
𝜉ÃB̃(x) = 𝜉Ã(x) ⋅ 𝜉B̃(x) (Zadeh 1968). The conditional probability of two independent 
fuzzy events is

with ℙ(B̃) > 0 . Note that one can also obtain the conditional probability between 
a crisp set A and a fuzzy set B̃ as a special case of Eq. (4). If a discrete or continu-
ous random variable Y is defined over B , then fuzzy probability can be generalized 
accordingly. For instance, denoting with fY (y;�) the probability density of Y, then 
ℙ(Ã) = ∫

Y
𝜉�A(y)fY (y;�) dy , with Y being the support of Y. Similarly, when a sample 

of n independent observations � = (y1,… , yn) from Y1,… , Yn is available, the likeli-
hood of the sample � can be generalized as follows:

where the definition ��̃ =
∏n

i=1
�ỹi(y) has been used for the joint fuzzy set (Gebhardt 

et al. 1998). Further details about fuzzy generalization of likelihood functions, fuzzy 
random variables, and fuzzy probability space can be found in Cattaneo (2017), 
Couso et al. (2014), Denœux (2011), Gebhardt et al. (1998), Gil et al. (2006).

We interpret fuzzy data in the context of random variables following the epis-
temic viewpoint on fuzzy set theory (Couso and Dubois 2014). In particular, for a 
fuzzy set Ã , �

Ã
(Y = y) is interpreted as the possibility that the crisp event Y = y has 

to occur. Indeed, �
Ã
(Y = y) ∈ (0, 1) can be conceived as a graded plausibility about 

the occurrence of the event Y = y , with �
Ã
(Y = y) = 1 indicating the fact that Y = y 

(3)ℙ(Ã) = ∫
ℝ

𝜉Ã(x)dℙ

(4)ℙ(Ã|B̃) = ℙ(Ã, B̃)

ℙ(B̃)
=

∫ 𝜉Ã(x)𝜉B̃(x)dℙ(x)

∫ 𝜉B̃(z)dℙ(z)

(5)L(�;�) =

n∏

i=1
∫
Y

�ỹi (y) fYi(y;�) dy
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is fully possible. By contrast, �
Ã
(Y = y) = 0 indicates that Y = y is not possible at 

all. Hence, fuzzy sets can intuitively be viewed as graded constraints on crisp ran-
dom variables. In this way, the randomness due to the data generation process and 
the fuzziness due to observer’s state of knowledge can be analysed simultaneously 
by means of a common statistical representation. As a remark, note that in this set-
ting �

Ã
(Y = y) is thought as being the consequence of a two-step generation process, 

in which a realization y is drawn from Y first and then a fuzzy set �
Ã
 is used to encap-

sulate the uncertainty about Y = y in terms of possibility distribution. Hence, only 
the first stage is a random experiment whereas the second stage is a non-random 
fuzzification of the outcomes being realized.

2.2 � Fuzzy scaling and fuzzy data

Since the seminal work of Hesketh et al. (1988), fuzzy sets have been extensively 
used in the context of ratings data (for a review, see Calcagnì and Lombardi 2014; 
Lubiano et al. 2016; Calcagnì et al. 2021). Although several formats have been pro-
posed for implementing fuzzy ratings tools (e.g., conversion scales, direct rating 
scales, implicit rating scales), all of them share the same idea that ratings data can-
not be coerced into crisp numbers without a certain loss of information. Except for 
the case of dichotomous ratings, polytomous responses often show some degrees of 
imprecision and fuzziness, which is essentially due to participants’ rating processes 
(Kahneman and Tversky 1982). In general, ratings data can be enriched by includ-
ing information related to participants’ response process and fuzzy conversion or 
fuzzy rating systems can be adopted to this purpose. In what follows, we will briefly 
review both the approaches to fuzzy rating.

Fuzzy conversion scales aim at turning standard crisp ratings into fuzzy num-
bers through the adoption of user-defined fuzzy systems (e.g., see Vonglao 2017) 
or statistically-oriented procedures (e.g., see Yu and Wu 2009). In general, a typical 
implementation of a user-defined fuzzy conversion scale, a fuzzy system relates a 
space of crisp responses (input) to a space of fuzzy numbers (output). Next impli-
cation rules mapping both input and output sources are finally established. For 
instance, in the simplest case of a 5-point scale, the crisp response Y = 2 activates 
the fuzzy sets of the output space via an IF–THEN implication rule. On the basis 
of the implemented fuzzy system (e.g., Mamdani, Sugeno), the output can result in 
the activation of one or two fuzzy sets and the final fuzzy response—which is given 
by the intersection of the activated fuzzy sets—will represent a more certain or less 
certain response, respectively.

Fuzzy rating scales adopt computerized interfaces through which the rater’s 
response process is directly mapped to fuzzy numbers (e.g., see Hesketh et al. 1988; 
Calcagnì and Lombardi 2014; de  Sáa et  al. 2014). For instance, in the direct rating 
based implementation (de Sáa et al. 2014), raters are asked to respond by drawing fuzzy 
sets according to their perceived uncertainty. In this case, the rating procedure proceeds 
as follows. First, raters draw an interval on a pseudo-continuous graphical scale, which 
represents the set of admissible responses compatible with the assessment of the item 
being rated. Then, a degree of confidence is expressed by drawing another interval 



1 3

Modeling random and non-random decision uncertainty in ratings…

around the previous interval response. Finally, both the intervals are interpolated to 
form the final fuzzy responses (e.g., trapezoidal or triangular). In a similar way, fuzzy 
indirect scales adopt a computerized graphical interface to get responses from raters. 
However, in this case, they are not asked to directly draw their responses; rather, fuzzy 
sets are build from a set of implicit measures associated to the final crisp response (e.g., 
response time). For instance, the DYFRAT scale (Calcagnì and Lombardi 2014) uses a 
set of biometric measures associated with the cognitive response process (i.e., response 
time, computer-mouse trajectories) to derive the rater’s fuzzy response. In particular, 
raters are presented with a pseudo-circular scale with M levels and—similarly to the 
case of crisp Likert-type scales—they are asked to choose which of these levels is the 
most appropriate to represent their response for a given item being rated. Meanwhile, 
the system records the streaming coordinates of the computer mouse cursor (at a fixed 
sampling rate) and the elapsed time since the beginning of the response trajectory. 
Finally, both information are used to define a fuzzy response according to the follow-
ing rationale: (1) computer-mouse trajectories are projected onto a linear scale and the 
histogram of linearized radians is used to derive the fuzzy set (e.g., triangular, beta) 
in terms of its support and core, (2) response times are used to intensify or reduce the 
fuzziness of the sets by means of linguistic quantifiers (e.g., the longer the response 
time, the higher the fuzziness of the set).

In the context of fuzzy scaling, fuzzy numbers are used as a formal representa-
tion for rating responses involving individual-based judgments, attitudes, and opin-
ions. Although fuzzy conversion and rating scales differ in the way they derive fuzzy 
responses, both aim at providing a model for the fuzziness or imprecision which is 
present in the rating process Y ∼ fY (y;�) . As for the more general case of LR fuzzy 
numbers, the parameters of a beta fuzzy number can be linked to the rating process as 
follows. First, consider a continuous rating scale bounded on a subset (yl, yu) of reals. 
Then, m represents the most plausible final rating choice �

Ỹ
(Y = y) = 1 , s is the pre-

cision of m such that smaller values indicate larger levels of hesitation in the rating 
choice, and �

Ỹ
 conveys the overall decision uncertainty in terms of fuzziness (the larger 

the fuzziness, the highest the decision uncertainty). Note that, ideally, if there was no 
subjective uncertainty, then the fuzziness would tend to zero and true rating realizations 
would be precisely observed (i.e., Y = y = m ). In this case, there would not need to 
represent ratings as fuzzy data.

3 � Variable dispersion beta model for fuzzy ratings

In this section we illustrate our proposal to analyse continuous bounded ratings data 
in situations with decision uncertainty. Hereafter, ratings data will be considered scaled 
into the real subset (0, 1) without loss of generality.

3.1 � Model

Let � = (y1,… , yi,… , yn) ∈ (0, 1)n be a sample of n observations from Beta distrib-
uted independent random variables Y1,… , Yi,… , Yn with density:
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with � ∈ (0, 1)n being the n × 1 vector of location parameters and � ∈ (0,∞)n the 
n × 1 vector of precision parameters (Ferrari and Cribari-Neto 2004). The sequence 
Y1,… , Yi,… , Yn models the ratings for each of the n participants, with the conven-
tion that {0, 1} represent the lower and upper bounds of the rating domain, respec-
tively. In order to account for heterogeneity and non-constant variance in rating 
responses, location and dispersion parameters can be non-linearly re-written using 
monotonic and twice differentiable link functions, mapping the support (0, 1) into 
ℝ , as follows:

where � and � are n × J and n × H matrices of known continuous or categorical 
covariates, with � and � being vectors of appropriate order containing unknown 
parameters. The functions g1(⋅) and g2(⋅) can be chosen among a variety of link 
functions (e.g., logit, probit, log. See McCulloch 2000). Two typical choices are the 
logit and logarithm functions, which yield to:

Under Eq. (8), the log-likelihood function for the variable dispersion beta model is:

with � (⋅) being the Euler gamma function and � =
(
ln �, ln (� − �)

)
 the sufficient 

statistics for the inference on � = (�, �).
In light of the data representation adopted in this work, decision uncertainty is 

treated as a systematic and non-random component which occurs after the sampling 
process � ∼ f�(�;�,�) has been realized. This leads to a situation where the sample 
� cannot be precisely observed and a collection of fuzzy data �̃ is instead available. 
When fuzzy data are represented as beta fuzzy numbers, then

with � and � being n × 1 vectors of modes and precisions/spreads for the fuzzy 
observations. Turning Eqs. (3) into (6), the joint density of 𝐲̃ can be written as:

(6)f�(�;�,�) =

n∏

i=1

� (�i)

� (�i�i)� (�i − �i�i)
y
(�i�i−1)

i
(1 − yi)

(�i−�i�i−1)

(7)g1(�) = �� and g2(�) = ��

(8)� =
(
1 + exp(��)

)−1
and � = exp(��)

(9)

l(�;�) =

n∑

i=1

ln�
(
exp(�i�)

)
− ln�

(
exp(�i�)

1 + exp(−�i�)

)

− ln�

(
exp(�i�) −

exp(�i�)

1 + exp(−�i�)

)

+ ln yi

(
exp(�i�)

1 + exp(−�i�)
− 1

)

+ ln(1 − yi)

(
exp(�i�) −

exp(�i�)

1 + exp(−�i�)
− 1

)

�̃ = (�, �) =
(
(m1, s1),… , (mi, si),… , (mn, sn)

)
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where the joint fuzzy set ��̃ =
∏n

i=1
�ỹi(y) has been factorized in terms of prod-

uct. The log-likelihood of the model under fuzzy observations can analogously be 
obtained using Eq. (10). Note that, in this representation the vectors � and � of the 
fuzzy sets enter the model as observed quantities whereas the parameters � and � 
still remain non-fuzzy quantities.

3.2 � Parameter estimation

To provide estimates for � = (�, �) in the context of fuzzy ratings data, one can 
maximize the log-likelihood l(�;�̃) function, which is obtained by Eq. (10). This 
would require an iterative procedure, alternating between the numerical computa-
tion of the integral and the maximization of the function. However, to avoid the 
problem of approximating integrals in Eq. (10) and have a way to compute stand-
ard errors consistently, we will use a variant of the Expectation–Maximization 
algorithm generalized for the case of fuzzy data (Denœux 2011). As for the stand-
ard EM algorithm, the fuzzy-EM version at the kth iteration alternates between 
the E-step, which involves the computation of the expected complete-data log-
likelihood using �(k−1) , and the M-step, which instead maximizes the expected 
complete-data log-likelihood w.r.t. to �(k) . These steps generate a non-decreasing 
sequence of lower bounds for the maximization of the observed-data log-likeli-
hood l(�;�̃) (for formal details, see Denœux 2011). In the fuzzy-EM variant, the 
complete-data log-likelihood is that obtained if � was precisely observed (see 
Eq. 9). Therefore, given the (k − 1) th estimates �� = �(k−1) the E-step for the kth 
iteration of the algorithm consists in the computation of the following quantity:

where C contains all the terms of Eq. (9) that do not involve the random quantities to 
be filtered. To compute the conditional expectations of the E-step, note that Yi||ỹi is a 
random variable conditioned on fuzzy events and its density can be obtained using 
Eq. (4) simplified for the case where A is a crisp event:

(10)

f
�̃
(�;�,�) =

n∏

i=1
∫
Y

�ỹi (y) dℙ�

(
Yi = y

)

=

n∏

i=1
∫
Y

�ỹi (y)
�(�i)y

(�i�i−1)(1 − y)(�i−�i�i−1)

�(�i�i)�(�i − �i�i)
dy

(11)

Q
(
�,��

)
= ���

[
l(�;�)||�̃

]

= C +

n∑

i=1

���
[
ln Yi

||ỹi
]
(

exp
(
�i�

�
)

1 + exp
(
−�i�

�
) − 1

)

+

n∑

i=1

���
[
ln(1 − Yi)

||ỹi
]
(
exp

(
�i�

�
)
−

exp
(
�i�

�
)

1 + exp
(
−�i�

�
) − 1

)
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Under the case of beta fuzzy numbers and up to a normalization constant, the condi-
tional density fYi|ỹi(y;𝜇i,𝜙i) corresponds to a beta density with parameters given as a 
function of fuzzy data and crisp parameters of the complete-data density:

Then, the first expectation ��′
[
ln Yi

||ỹi
]
 can be approximated via Taylor expansion 

around ��′
[
Yi
||ỹi

]
 as follows:

Similarly, the second expectation ���
[
ln(1 − Yi)

||ỹi
]
 is obtained by symmetry of the 

beta function:

Once expected values are computed, the M-step of the algorithm involves the maxi-
mization of Q

(
�,�′

)
 with respect to the elements of � and can be performed by plug-

ging-in Eqs. (14)–(15) into the log-likelihood Eq. (11). The simultaneous score equa-
tions for M-step are as follows:

where � and � are defined as in Eq. (8) whereas the terms

(12)
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||ỹi
] ∼
= ln ���

[
(1 − Yi)

||ỹi
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denote the filtered data which are computed using Eqs. (14)–(15). Finally, �(k) is 
obtained by computing the roots of Eqs. (16)–(17) numerically, for instance using 
Gauss-Newton method.

3.3 � Standard errors, diagnostics, and inference

Standard errors for 𝜷 and 𝜸̂ can be computed using the observed information matrix 
I𝜽̂ from the Hessian of the maximum likelihood estimates 𝜽̂ obtained solving Eqs. 
(16)–(17) for � and � . In the context of EM algorithm, I𝜽̂ can be approximated using 
the empirical observed information matrix (Meilijson 1989), as follows:

where U(i)

𝜽̂
= [U

(i)

𝜷
;U

(i)

𝜸̂
] is the score vector for the ith observation calculated at 𝜷  and 

𝜸̂ . The standard errors are then calculated as usual:

Note that this approximation avoids the computation of Hessian of the complete-
data log-likelihood as it solely uses the score equations where the unobserved vector 
� is replaced by �∗

(1)
 and �∗

(2)
 . Alternatively, standard errors can also be obtained via 

non-parametric bootstrap (McLachlan and Peel 2004). An important quantity com-
monly used to assess the quality of the estimated model is that involving standard-
ized residuals which, for the case of fuzzy data, can be generalized as follows:

where 𝜇̂i = (1 + exp(�i𝜷))
−1 and 𝜙̂ = exp(�i𝜸̂) whereas 𝜉�yi(𝜇̂i) is the fuzzy member-

ship computed for the predicted quantity 𝜇̂i . In general, diagnostics for the model 
can be performed by plotting, for instance, r1,… , rn against the indices of the obser-
vations in order to check for particular trends or patterns in the predicted data. Simi-
larly to generalized and beta linear models, also the overall fit of the estimated fuzzy 
beta model with respect to the observed fuzzy data can be assessed by means of 
pseudo-R2 indices, which generalize the standard residuals-based R2 indices (Ferrari 
and Cribari-Neto 2004; Veall and Zimmermann 1994). In this context, we resorted 
in applying a likelihood-ratio based pseudo-R2 index (Aldrich and Nelson 1984; 
Veall and Zimmermann 1994) which, like for the McFadden’s pseudo-R2 (McFad-
den et  al. 1973), contrasts the likelihood value l(𝜽̂;�)M1

 of the fuzzy beta linear 
model against the likelihood value of the null model l(𝜽̂;�)M0

 (i.e., a fuzzy beta lin-
ear model with no predictors for � and � ). The index is as follows:
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where � = 2
(
l(𝜽̂;�)M1

− l(𝜽̂;�)M0

)
 and � =

1

n
l(𝜽̂;�)M0

 . The likelihood-ratio based 
pseudo-R2 is normalized in [0,  1] and approximates the relationship between the 
likelihood-ratio statistic and the R2 index in the linear regression setting (Veall and 
Zimmermann 1994).

Finally, likewise for the non-fuzzy case, inference on � and � can be performed 
using maximum-likelihood (ML) theory (Denœux 2011; McLachlan and Peel 
2004) and, consequently, hypothesis testing on model’s parameters can be per-
formed using fuzzy version of likelihood ratio test (e.g., see Berkachy and Donzé 
2019; Najafi et al. 2010). In this context, as for the maximum-likelihood theory 
under the EM procedure, inferential results are based on the asymptotic proper-
ties of ML-based estimators. For further details, we refer the reader to Denœux 
(2011), McLachlan and Peel (2004), and Berkachy and Donzé (2019).

4 � Simulation study

The aim of this study is twofold. First, we will evaluate the performances of EM 
estimators for location and precision parameters for the fuzzy beta linear model. 
Second, we will assess whether standard methods, such as fixed/random-effects 
beta linear models, perform as good as the proposed method if applied on defuzz-
ified data. Although the EM algorithm for fuzzy data has been validated else-
where (e.g., see De  Bruin et  al. 2011; Su et  al. 2015), in the present study we 
have preferred to evaluate the performances of the fuzzy-EM procedure to fur-
ther provide converging results. The whole simulation procedure has been per-
formed on a (remote) HPC machine based on 16 cpu Intel Xeon CPU E5-2630L 
v3 1.80 GHz, 16 × 4 GB Ram whereas computations and analyses have been done 
in the R framework for statistical analyses.

Design The design involved three factors, namely (1) n ∈ {50, 100, 250, 500} , 
(2) J ∈ {2, 4} , and (3) H ∈ {1, 3} , which were varied in a complete factorial 
design, producing K = 4 × 2 × 2 = 16 possible combinations. For each combina-
tion, B = 5000 samples were generated yielding to 5000 × 16 = 80,000 new data 
as well as an equivalent number of parameters. The true parameters of the model 
were fixed as follows:

Procedure Let nl , jk , hm be distinct levels of factors n, J, H. Then, fuzzy data 
were generating according to the following procedure which mimics the hierar-
chical process underlying rating under decision uncertainty: 

pseudo-R2 = −
�(1 − �)

(� + n)�

�0 = {(−0.5,−0.81), (−0.5,−0.81, 0.7, 1.15)}

�0 = {(4.8), (4.8,−1.5, 1.03)}
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(a)	 �nl×jk
= [�nl ,�nl×jk−1

] and �nl×hm
= [�nl ,�nl×hm−1

] , where �nl×jk−1
 and �nl×hm−1

 were 
drawn from Unif (1, 5)

(b)	 location and precision terms were computed as follows: 

(c)	 crisp data underlying fuzzy observations were generated according to the vari-
able dispersion beta linear model yi ∼ Beta(�i�i,�i − �i�i) , i = 1,… , nl

(d)	 fuzzy data were generated by making �nl imprecise via a two-step data-generation 
process (Quost and Denoeux 2016; Su et al. 2014). First, spread components 
were generated as �nl ∼ Gamma(1.025, 0.001) . Second, modes were generated 
by mi ∼ Beta(yisi, si − siyi) , i = 1,… , nl

(e)	 parameters � jk
 and �hm were estimated using four methods:

•	 fEM: expectation–maximization estimators for the fuzzy case.
•	 dML: maximum-likelihood estimators on two type of defuzzified data com-

puted using the centroid method y∗
i
= ∫ 1

0
y �ỹi (y) dy and the first-maximum 

method y∗
i
= supy∈(0,1)

{
�ỹi (y)

}
 for i = 1,… , nl . The ML procedure imple-

mented in the R library betareg has been used in this case (Zeileis et al. 
2010).

•	 dREML: restricted maximum-likelihood estimators on defuzzified data 
obtained by treating fuzzy sets �ỹ1 ,… , �ỹn as random effects. In particular, for 
each observation i = 1,… , nl , extremes of �-sets y∗

i
= [inf(�c

i
), sup(�c

i
)] were 

used, with �c
i
= {y ∈ (0, 1) ∶ �ỹi(y) ≥ �} being the set obtained by cutting the 

ith fuzzy data at � = [0.01, 0.35, 0.7] . In this case, estimates have been per-
formed using the R library glmmTMB for random-effects beta linear models 
(Brooks et al. 2017).

Outcome measures For each condition of the simulation design, sample results 
were evaluated using bias of estimates and root mean square error.

Results Tables 1 and 2 show the results of the simulation study with regards to 
averaged bias and root mean square error. For the sake of clarity, results for the cases 
J = 2 and J = 4 were reported separately. To better interpret the results, it should be 
noted that conditions with H = 1 represent simplest cases where the precision term 
is held constant (the linear term for � is a simple intercept model). By contrast, con-
ditions with H = 3 represent those situations showing some levels of heterogeneity 
in the response variable (in this case the linear term for � contains two slopes). We 
first consider the conditions with J = 2 . With respect to the parameters 𝜷  , all the 
methods showed negligible bias in estimating the location terms of the beta linear 
model both in the cases with H = 1 and H = 3 . However, unlike dML and dREML, 
the fEM solution achieved lowest RMSE. Considering the parameters 𝜸̂ , dML and 
dREML algorithms showed worse performances when compared to fEM both in 
the case of low ( H = 1 ) and high ( H = 3 ) model complexity. In particular, they 
showed larger bias in estimating the precision terms of the beta linear model, with 
bias being higher with increasing model complexity ( H = 3 ). A similar pattern was 

�nl×1
= logit−1

{
1 + exp(�nl×jk

�0
jk×1

)
}

�nl×1
= exp(�nl×hm

�0
hm×1

)
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also observed for RMSE. In particular, when compared to fEM, dML and dREML 
showed larger values, with severity increasing over model complexity. Interestingly, 
although the condition with H = 3 represents a more complex situation with respect 
to parameters estimation, fEM outperformed the other methods. Results for the con-
ditions with J = 4 largely resemble those obtained with H = 1 . Also in this case, 
the fEM algorithm showed better performances over dML and dREML. Finally, for 
each method we also computed overall indices of over/under-estimation r� and r� , as 
the ratio between the number of positive and negative bias, and the overall percent-
age of over-estimation p� and p� . Table 3 reports the results along with the overall 
RMSE for both the arrays of parameters. In general, fEM and dML (mode) showed 
negligible overestimation for �0 whereas dML (mean) and dREML tended to over-
estimate the true arrays of parameters. On the contrary, when estimating �0 , fEM 
tended to overestimate the true population parameters whereas dML and dREML 

Table 1   Monte Carlo study: average bias and average root mean square errors for the arrays of param-
eters 𝜷 and 𝜸̂ (case J = 2)

n, H fEM dML (mean) dML (mode) dREML

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

𝜷

n = 50

H = 1 − 0.001 0.198 − 0.017 0.251 0.002 0.276 − 0.032 0.459
H = 3 0.000 0.355 − 0.007 0.387 − 0.006 0.401 − 0.063 0.626
n = 100

H = 1 − 0.001 0.120 − 0.010 0.181 0.002 0.177 − 0.043 0.412
H = 3 − 0.001 0.186 − 0.007 0.220 − 0.003 0.200 − 0.051 0.433
n = 250

H = 1 0.000 0.073 − 0.006 0.142 0.001 0.118 − 0.042 0.341
H = 3 − 0.002 0.126 − 0.008 0.173 − 0.003 0.140 − 0.054 0.331
n = 500

H = 1 − 0.001 0.050 − 0.006 0.132 0.000 0.086 − 0.035 0.289
H = 3 0.000 0.084 − 0.003 0.134 − 0.002 0.095 − 0.042 0.255
𝜸̂

H = 1 0.069 0.039 − 0.351 0.104 − 0.531 0.138 − 1.415 0.320
H = 3 − 0.025 0.425 − 0.177 0.540 − 0.241 0.714 − 0.059 1.077
n = 100

H = 1 0.048 0.033 − 0.408 0.102 − 0.608 0.145 − 1.204 0.270
H = 3 − 0.013 0.613 − 0.152 0.766 − 0.141 0.923 − 0.077 1.292
n = 250

H = 1 0.039 0.025 − 0.435 0.098 − 0.665 0.150 − 1.113 0.241
H = 3 − 0.031 0.655 − 0.180 0.835 − 0.190 1.177 − 0.148 1.723
n = 500

H = 1 0.028 0.018 − 0.447 0.097 − 0.681 0.149 − 1.138 0.241
H = 3 − 0.020 0.743 − 0.147 1.369 − 0.163 1.215 − 0.195 1.628
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tended to underestimate. On the whole, fEM showed less variable and less biased 
estimates of �0 and �0 than the other procedures adopted for defuzzified data.

5 � Applications

In this section we will illustrate the application of the fuzzy beta model to two 
empirical studies involving fuzzy ratings data collected using two types of fuzzy 
rating scales. In particular, the first application concerns the analysis of risk-taking 
behavioral data collected by means of an indirect fuzzy rating approach (Calcagnì 
and Lombardi 2014). By contrast, the second application is about the analysis of 
customer satisfaction data collected by means of a direct fuzzy rating approach 

Table 2   Monte Carlo study: average bias and average root mean square errors for the arrays of param-
eters 𝜷 and 𝜸̂ (case J = 4)

n, H fEM dML (mean) dML (mode) dREML

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

𝜷

n = 50

H = 1 0.001 0.401 0.000 0.439 0.001 0.523 0.000 0.521
H = 3 0.001 0.631 0.010 0.642 0.006 0.695 0.019 0.892
n = 100

H = 1 0.000 0.341 0.010 0.367 − 0.001 0.469 0.038 0.518
H = 3 0.000 0.433 0.000 0.458 0.002 0.512 0.002 0.695
n = 250

H = 1 0.000 0.348 − 0.001 0.455 0.000 0.539 0.001 0.760
H = 3 0.003 0.637 0.009 0.644 0.011 0.903 0.034 1.001
n = 500

H = 1 0.006 0.562 − 0.003 0.545 0.001 0.669 0.000 0.974
H = 3 0.001 0.461 0.006 0.557 0.004 0.612 0.011 0.756
𝜸̂

n = 50

H = 1 0.090 0.040 − 0.308 0.094 − 0.480 0.139 − 1.279 0.294
H = 3 0.044 0.601 − 0.066 0.794 − 0.035 0.908 0.020 1.264
n = 100

H = 1 0.075 0.034 − 0.374 0.096 − 0.582 0.142 − 1.198 0.268
H = 3 0.051 0.732 0.038 1.260 − 0.009 1.350 − 0.143 1.593
n = 250

H = 1 0.041 0.024 − 0.421 0.094 − 0.643 0.149 − 1.140 0.246
H = 3 − 0.035 0.753 − 0.187 1.110 − 0.200 1.198 − 0.163 1.749
n = 500

H = 1 0.030 0.018 − 0.435 0.094 − 0.684 0.151 − 1.158 0.246
H = 3 − 0.015 1.016 − 0.132 1.073 − 0.158 1.533 − 0.211 2.556
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(de Sáa et al. 2014). Note that the applications are chosen to review two of the most 
common methods for fuzzy scaling, namely fuzzy indirect (case study 1) and direct 
rating scales (case study 2).

5.1 � Case study 1: Reckless‑driving and risk‑taking behavior in young drivers

Reckless-driving among young people is one of the major cause of mortality and 
injuries worldwide (Toroyan 2015). It is a very complex phenomenon involving 
a number of human and non-human factors, such as personality, cognitive styles, 
social context (e.g., family, peer group), infrastructures (e.g., roads, light), and 
cultures (e.g., see Bıçaksız and Özkan 2016; McNally and Bradley 2014; Scott-
Parker et  al. 2015; Taubman-Ben-Ari 2010). Several studies have recognized the 
role of subjective factors like sensation-seeking, normlessness, anxiety, aggressive-
ness, driving attitudes in determining risky behaviors (Bıçaksız and Özkan 2016). 
Researchers have also assessed the contribution of parenting styles and peer relations 
to young drivers’ intention to take risks (Taubman-Ben-Ari 2010, 2014). Because of 
its characteristics, assessing reckless-driving behaviors is a typical situation where 
self-reported measures can show some levels of decision uncertainty, which can-
not appropriately be analysed using final crisp responses only. In this application, 
we consider a set of models where reckless-driving behaviors (rdb) were linearly 
predicted by the use of substances (drugs), driving anger (anger), and family cli-
mate (fcrs). In particular, we hypothesized that both the use of substances and 
driving anger would linearly increase the self-reported reckless-driving behaviors 
whereas family climate would instead acts by decreasing the amount of risky behav-
iors. Moreover, we also assessed whether the dispersion of fuzzy ratings data varied 
as a function of participants’ characteristics such as gender (sex) and frequency of 
driving (driving_frequency).

Data and measures A questionnaire survey was carried out on n = 69 young driv-
ers in Trentino region (north-est of Italy). Of these, 31% were women with mean age 
of 18.27 years (SD = 0.56). All participants were young drivers with an average of 
driving experience of 12 months since receipt of their driver’s license. About 73% 
of them drove frequently during the week, 26% drove once a week. The survey con-
sisted of 24 items from three self-reported questionnaires: (1) the Reckless Driving 
Behavior Scale (RDB) (McNally and Bradley 2014) used to assess those behaviors 
that increase the probability of a vehicle crash due to driving under the influence of 

Table 3   Monte Carlo study: overall ratios r between over and under-estimation, percentage p of over-
estimation, and overall root mean square error

Note that all the indices were computed over B = 5000 replications

fEM dML (mean) dML (mode) dREML

r p rmse
ov

r p rmse
ov

r p rmse
ov

r p rmse
ov

𝜷 1.002 50.1 0.313 1.244 55.3 0.358 1.008 50.2 0.401 1.161 53.4 0.579

𝜸̂ 1.388 44.0 0.361 0.362 77.8 0.533 0.351 79.1 0.636 0.390 78.4 0.938
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substances (drugs), extreme motorsport behaviors (extreme), and speeding/steering 
behaviors (positioning); (2) a short version of the Driving Anger Scale (DAS) (Def-
fenbacher et al. 1994), adopted to assess driving angers provoked by someone else’s 
behaviors like slow driving and discourtesy; (3) a simplified version of the Family 
Climate Road Safety (FCRS) questionnaire (Taubman-Ben-Ari and Katz-Ben-Ami 
2013), adopted to evaluate the role of parents in teens’ safe driving, especially with 
regards to communication, monitoring, and parents’ messages. Questionnaires were 
administered using DYFRAT (Calcagnì and Lombardi 2014), a computerized fuzzy 
rating scale which adopts the mouse-tracking methodology (Freeman and Ambady 
2010) as a tool to implicitly quantify rating processes. For each item of the sur-
vey, participants were asked to respond using a pseudo-circular rating scale with 
six-points (RDB), five-points (DAS), and four-points (FCRS) anchors, respectively. 
Participants gave their responses by mouse-clicking the chosen level of the scale. 
Meanwhile, we recorded the streaming x − y coordinates of the computer-mouse 
needed to reach the chosen anchor. According to the DYFRAT methodology, the 
linearized histograms of the collected radians were used to compute beta fuzzy sets 
for each item and for each participant (fuzzy sets were obtained by means of an 
heuristic optimization procedure which converts histograms into fuzzy sets). Finally, 
modes �1,… ,�n and precisions �1,… , �n were used to represent final responses 
and uncertainties involved during the rating process. Figure 1 shows an example of 
observed beta fuzzy numbers for the RDB response variable.

Data analysis and results The fuzzy response variable rdb was computed by 
aggregating the fuzzy variables extreme and positioning of the RDB question-
naire in terms of mean (Hanss 2005). Similarly, fcrs was obtained by aggre-
gating the crisp responses for the variables monitoring, messages, and com-
munications from the FCRS questionnaire. To simplify interpretation of the 
results, variables drugs and fcrs were made categorical using median split 
on their crisp responses. This yielded to two new dichotomous variables, namely 
drugs (non-use/use) and fcrs (bad/satisfactory family climate). By contrast, 
the variable anger entered the model as a fuzzy variable in terms of mode 
and precision components. First, we run a model (model 1) where dispersion � 
was held fixed for all participants whereas the mean � was modeled using the 
fuzzy variable anger and the categorical variables fcrs and drugs. Table 4 
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Fig. 1   Case study 1: Beta fuzzy responses on the RDB variable for a subsample of participants
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shows the final estimates along with their standard errors computed using the 
empirical observed information matrix (see Eqs.  18–19) and Pearson’s residu-
als. The results suggest that rdb increased as a function of mode components of 
anger ( 𝛽1 = 1.351 , 𝜎𝛽1 = 0.356 ) whereas its precision/spread components did 
not affect the response variable ( 𝛽2 = 0.001 , 𝜎𝛽2 = 0.002 ). Moreover, participants 
using drugs showed higher levels of rdb ( 𝛽4 = 0.458 , 𝜎𝛽4 = 0.187 ) when com-
pared to those who did not use substances. As expected, participants with sat-
isfactory family climate showed lower levels of rdb ( 𝛽3 = −0.192 , 𝜎𝛽3 = 0.440 ) 
when compared to participants with a bad family climate. To account for het-
erogeneity in the response variable rdb, two further models were estimated, 
one which included the dichotomous variable sex, and the other which also 
included driving_frequency. In order to evaluate models improve-
ments, both the models were compared in terms of fuzzy likelihood-ratio test 
(Berkachy and Donzé 2019). Table 4 reports the results for model 2 and model 
3. With regards to model 2, the likelihood-ratio test computed against model 
1 reveled that sex improved the fit of the model ( �2

7−6=1
= 5.001 , p = 0.025 , 

AICmodel1 = −163.38 , AICmodel2 = −166.38 ), with men showing lower levels of 
heterogeneity in the response variable ( �1 = −1.199 , 𝜎𝛾̂1 = 0.613 ) when com-
pared to women. To further analyse the variability in reckless-driving behav-
iors, we asked whether this varied as a function of participants’ frequency 
of driving. To assess this hypothesis, model 3 included driving_fre-
quency as an additional term in the precision equation. The likelihood-ratio 
test conducted against model 2 revealed that driving frequency did not 
improve the fit of the model ( �2

8−7=1
= 1.626 , p = 0.2021 , AICmodel2 = −166.38 , 

AICmodel3 = −166.01 ). The results were in line with the literature (e.g., see: 
Bıçaksız and Özkan 2016) and suggested that self-reported reckless-driving 
behaviors were positively associated to driving anger ( 𝛽1 = 1.485 , 𝜎𝛽1 = 0.378 ) 
and substance use ( 𝛽4 = 0.518 , 𝜎𝛽4 = 0.235 ). By contrast, family climate acted as 
a protective factor with satisfactory family climate being negatively associated 
to risky behaviors ( 𝛽3 = −0.126 , 𝜎𝛽3 = 0.157 ). Interestingly, variability of self-
reported responses varied as a function of gender, with female drivers showing 
more variable responses than male drivers ( ̂𝛾1 = −1.999 , 𝜎𝛾̂1 = 0.613 ). Figure 2 
plots the predicted curves against the observed fuzzy data as a function of both 
continuous (panels A-B) and categorical (colors in both panels) predictors (note 
that only estimated modes 𝝁̂ were plotted for the sake of simplicity). To further 
investigate the role of fuzziness to predict self-reported reckless-driving behav-
iors (RDB), we contrasted the results of the final model (model 2) against the 
same model adapted on mean-based defuzzified response data (i.e., data without 
the components �1,… , �n for the decision uncertainty). Table 5 shows the final 
estimates computed using maximum-likelihood as implemented in standard beta 
regression model (Ferrari and Cribari-Neto 2004). The coefficients 𝜷  for the 
mean 𝝁̂ component were nearly similar to those obtained for the fuzzy case. By 
contrast, the coefficients 𝜸̂ for the precisions were lower if compared to the fuzzy 
case. This is in line with the results of the simulation study. However, standard 
errors of the estimates for defuzzified data were smaller than those obtained for 
the fuzzy case, especially with regards to precision coefficients 𝜸̂ . Overall, this is 
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coherent withthe estimation approach used for fuzzy data as, in this case, stand-
ard errors were computed using score Eqs. (16)–(17) which are in turn based on 
filtered data (�∗

1
,… , �∗

n
).

Table 4   Case study 1: Variable dispersion fuzzy beta models for reckless-driving behaviors

Note that categorical variables were codified using dummy coding with the following reference levels: 
fcrs (ref.: bad), drugs (ref.: non-use), and driving frequency (ref.: always). The parameters � 
and � were linked to the response variable using logit(⋅) and log(⋅) link functions, respectively

fEM

Estimate SE

Model 1
Residuals quantiles: Q1∶ − 6.789 , Med∶ − 0.162 , Q3: 6.431
𝝁̂

 �
0
 (Intercept) − 2.140 0.282

 anger (m) 1.351 0.356
 anger (s) 0.001 0.002
 fcrs (bad vs. satisfactory) − 0.192 0.144
 drugs (non-use vs. use) 0.458 0.187

𝝓̂

 �
0
 (Intercept) 3.330 0.301

Model 2
Residuals quantiles: Q1∶ − 8.525 , Med∶ − 0.114 , Q3 : 4.860
 𝝁̂
�
0
 (Intercept) − 2.312 0.292

 anger (m) 1.485 0.378
 anger (s) 0.001 0.002
 fcrs (bad vs. satisfactory) − 0.126 0.157
 drugs (non-use vs. use) 0.518 0.235

𝝓̂

 �
0
 (Intercept) 4.069 0.472

 sex (female vs. male) − 1.199 0.613
Model 3
Residuals quantiles: Q1∶ − 7.154 , Med∶ − 0.067 , Q3 : 4.253
𝝁̂

 �
0
 (Intercept) − 2.362 0.289

 anger (m) 1.551 0.397
 anger (s) 0.001 0.002
 fcrs (bad vs. satisfactory) − 0.133 0.159
 drugs (non-use vs. use) 0.567 0.252

𝝓̂

 �
0
 (Intercept) 3.972 0.485

 sex (female vs. male) − 1.302 0.644
 driving_frequency (always vs. weekend) 0.712 0.793
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Table 5   Case study 1: Variable 
dispersion crisp beta model 
for reckless-driving behaviors 
adapted on defuzzified data

Note that categorical variables were codified as for the fuzzy beta 
linear models (see Table 4). The parameters � and � were linked to 
the response variable using logit(⋅) and log(⋅) link functions, respec-
tively

dML

Estimate SE

Model 2
Residuals quantiles: Q1∶ − 0.3973 , 
Med∶ 0.172 , Q3 : 0.636

𝝁̂

 �
0
 (Intercept) − 2.199 0.217

 anger (m) 1.284 0.347
 anger (s) 0.000 0.001
 fcrs (bad vs. satisfactory) − 0.105 0.120
 drugs (non-use vs. use) 0.530 0.145

𝝓̂

 �
0
 (Intercept) 3.746 0.251

  sex (female vs. male) − 1.082 0.330
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Fig. 2   Case study 1: Observed fuzzy data for RDB as a function of fcrs and drugs categorical predic-
tors (colors in both panels) and the two predictors for fuzzy anger (a, b). Fitted curves correspond to 
model 2 in Table 4. Note that rectangles represent �-cuts of the observed fuzzy data with � = 0.5 , i.e. 
�𝛼
i
=
[
min

(
{y ∈ [0, 1]∶ 𝜉�yi (y) > 0.5}

)
, max

(
{y ∈ [0, 1]∶ 𝜉�yi (y) > 0.5}

)]
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5.2 � Case study 2: Service quality in restaurant industry

Service quality is an important factor to assess the performances of a company and 
it is of a great interest for restaurants services as well. Several research have been 
conducted to understand the overall effect of perceived service quality on customer 
satisfaction which, in turn, leads to positive consumption behaviors like revisiting 
and recommending the restaurant (Almohaimmeed 2017; Namkung and Jang 2008). 
A number of variables influencing dining experience have been suggested, such as 
food quality, menu variety, food presentation, quality of staff service, internal/exter-
nal environments (Ha and Jang 2010). Last but not least, variables like prices and 
restaurant type (e.g., fast-food, fine restaurants) seem to be also involved in the het-
erogeneity of restaurant quality (Almohaimmeed 2017). In this application, we will 
consider a simple model for restaurant service quality where perceived quality of 
food (food) and staff’s perception of being courteous (employees) were used to 
predict perceived service quality (service_quality). In addition, we also eval-
uated the extent to which heterogeneity in the response variable can be accounted by 
price levels (prices) and restaurant type (type).

Data and measures Data were originally collected by de Sáa et  al. (2014) and 
refers to a survey of 14 items administered to a sample of n = 70 customers of dif-
ferent age, background, and occupation. The questionnaire included two of the most 
important factors of restaurant quality, namely food/beverage and service quality. 
We considered only complete cases, i.e. cases with no missing values. This yielded 
to a subset of n = 49 customers (31% women) with modal age between 25 and 
34 years. Informal restaurants were about 67% of the total, 16% of them were fine, 
10% fast-food, and 7% were self-service restaurants. About 69% of restaurants 
showed prices levels on average (about 15 Euro) whereas 31% of them reported 
higher prices. Ratings measures were collected by the authors using a Likert-type 
computerized fuzzy rating scale (de Sáa et al. 2014). In this case, participants pro-
vided their responses by means of a two-step direct rating procedure. First, they 
were asked to draw on the graphical pseudo-continuous scale the core of the set con-
taining the most plausible rating values. Then, conditioned on the previous choice, 
they were asked to draw the support of the set, which instead represents the most 
compatible set for the rating values. Finally, both the intervals were interpolated to 
form a trapezoidal fuzzy response. For the purposes of this application, trapezoidal 
fuzzy numbers were converted into beta fuzzy numbers adopting a procedure mini-
mizing the information content of the original fuzzy sets. In general, several trans-
formation procedures are available to this purpose (Nasibov and Peker 2008). Here, 
for the sake of simplicity, we resorted to adopt the simplest approximation based on 
the minimization of the area under the curve between two fuzzy sets. In particular, 
the parameters {m, s} ∈ (0, 1) ×ℝ

+ of the beta fuzzy set �
B̃
(y;m, s) that approximates 

a trapezoidal fuzzy set �
Ã
(y;a, b, c, d) with real parameters a < b < c < d were found 

by minimizing the function �(m, s) = | ∫
A0
�
Ã
(y;a, b, c, d)dy − ∫

B0
�
B̃
(y;m, s)dy| w.r.t. 

m and s. Similarly to the first application, modes �1,… ,�n of the beta fuzzy num-
bers represent final participants’ responses whereas their precisions �1,… , �n model 
the decision uncertainty occurred during the rating process. Figure  3 shows an 
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example of transformed beta fuzzy numbers along with the associated observed 
trapezoidal fuzzy sets for the service_quality response variable.

Data analysis and results To take into account decision uncertainty for predic-
tors, in this case fuzzy variables food and employees were defuzzified using the 
centroid method before entering the model. A first model was run including food 
and employees as predictors for the mean and type and price for precision 
components. Table  6 shows the final estimates along with their standard errors. 
As expected, service_quality increased as a function of food ( 𝛽1 = 1.870 , 
𝜎𝛽1 = 0.856 ) and employees ( 𝛽2 = 1.501 , 𝜎𝛽2 = 0.718 ). This is in line with pre-
vious studies on restaurant quality, suggesting that a higher perceived quality of 
food and staff predicts the perceived quality of restaurant services. In addition, the 
dispersion component of the model varied as a function of type, with informal 
restaurants showing higher heterogeneity in service_quality ( �1 = 1.084 , 
𝜎𝛾̂1 = 1.055 ) then self-service restaurants. The same applied for fine restaurants 
( �3 = 0.865 , 𝜎𝛾̂3 = 1.158 ) whereas fast-food showed decreasing levels of variability 
in service_quality ( �2 = −0.232 , 𝜎𝛾̂2 = 1.124 ) when compared to self-service 
restaurants. Interestingly, variability in service_quality is positively associ-
ated to price ( �4 = 1.802 , 𝜎𝛾̂4 = 1.239 ), with high-priced restaurants being more 
homogeneous in terms of perceived quality. This indicates that service_qual-
ity was not homogeneous over normal-priced restaurants and further covariates 
like internal/external atmospherics or image of restaurant might instead be needed to 
further account for such differences (Almohaimmeed 2017; Ha and Jang 2010). Fig-
ure 4 plots the predicted curves against the observed fuzzy data as a function of both 
continuous predictors (note that only estimated modes 𝝁̂ were plotted for the sake of 
simplicity). As for the previous case study, we compared the fuzzy beta model with 
the beta regression model adapted on mean-based defuzzified data. Table 7 shows 
the final estimates computed using maximum-likelihood as implemented in stand-
ard beta regression model (Ferrari and Cribari-Neto 2004). In line with the results 
from the simulation study, the estimated coefficients 𝜸̂ for the precision component 
𝝓̂ were lower than those for the fuzzy case and showed smaller standard errors. As 
stated previously, this can be interpreted in light of the estimation method used for 
the fuzzy case.
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Fig. 3   Case study 2: Beta fuzzy responses (straight black lines) and trapezoidal fuzzy responses (dashed 
black lines) on the service_quality variable for a subsample of participants
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Table 6   Case study 2: Variable 
dispersion fuzzy beta models 
for service quality in restaurant 
industry

Note that categorical variables were codified using dummy cod-
ing with the following reference levels: type (ref.: self-service), 
price (ref.: high). The parameters � and � were linked to the 
response variable using logit(⋅) and log(⋅) link functions, respectively

fEM

Estimate SE

Model 1
Residuals quantiles: Q1∶ − 5.061 , 
Med ∶ 0.030 , Q3 : 7.102

𝝁̂

 �
0
 (Intercept) − 1.509 0.622

 food 1.804 0.875
 employees 1.696 0.844

 𝝓̂
 �
0
 (Intercept) 1.047 2.923

 type (self-service vs. informal) 2.267 1.779
 type (self-service vs. fast-food) − 0.232 1.124
 type (self-service vs. fine) 0.865 1.158
 price (high vs. on average) 1.802 1.239

Table 7   Case study 2: Variable 
dispersion crisp beta model 
for reckless-driving behaviors 
adapted on defuzzified data

Note that categorical variables were codified as for the fuzzy beta 
linear models (see Table 6). The parameters � and � were linked to 
the response variable using logit(⋅) and log(⋅) link functions, respec-
tively

dML

Estimate SE

Model 1
Residuals quantiles: Q1∶ − 0.738 , 
Med∶ − 0.098 , Q3 : 0.801

𝝁̂

 �
0
 (Intercept) − 1.316 0.358

 food 1.597 0.405
 employees 1.484 0.383

 𝝓̂
 �
0
 (Intercept) 1.924 0.894

 type (self-service vs. informal) 0.924 0.843
 type (self-service vs. fast-food) − 0.394 0.987
 type (self-service vs. fine) 0.01 0.953
 price (high vs. on average) 0.842 0.431
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6 � Conclusions

In this article we developed a statistical approach to deal with bounded continuous 
ratings data in the case of non-random uncertainty. In particular, beta fuzzy numbers 
were adopted to represent ratings data subject to decision uncertainty and the beta 
regression framework was used to model the random counterpart of the overall rat-
ing process. The fuzzy component of the data was then used to estimate the latent 
and non-fuzzy characteristics of the raters population. Parameters estimation was 
performed by maximum likelihood using a version of the Expectation–Maximiza-
tion algorithm generalized for the case of fuzzy data. A simulation study and two 
real applications were used to highlight the characteristics of the proposed approach. 
The simulation study revealed that the fuzzy beta linear model showed more accu-
rate results over a set of standard methods which can be applied in the case of fuzzy 
data. The applications showed how the proposed method can be adopted in real 
cases involving ratings data represented as fuzzy numbers.

A nice advantage of the proposed approach is its simplicity and flexibility in deal-
ing with fuzzy data. Indeed, as it encapsulates decision rating uncertainty directly in 
�̃ , the fuzzy beta linear model does not require the extension of its parametric struc-
ture to account for modes � and precisions � of beta fuzzy data. Indeed, in the cur-
rent proposal, the model’s parameters � = {�, �} are not represented as fuzzy num-
bers. Consequently, parameters estimation and inference can still be performed using 
the asymptotic properties of maximum likelihood theory. In this setting, the fuzzy 
beta model recovers the parameters of the underlying rating process Y ∼ fY (y;�) by 
filtering the imprecise data in terms of expectation �𝜃

[
Y|ỹ

]
 . However, although this 

constitutes an important advance, it should be noticed that fuzziness of the data is 
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Fig. 4   Case study 2: Observed fuzzy data for service_quality as a function of the two 
continuous predictors food (a) and employees (b). Fitted curves correspond to model 1 
in Table  6. Note that rectangles represent �-cuts of the observed fuzzy data with � = 0.5 , i.e. 
�𝛼
i
=
[
min

(
{y ∈ [0, 1] ∶ 𝜉�yi (y) > 0.5}

)
, max

(
{y ∈ [0, 1] ∶ 𝜉�yi (y) > 0.5}

)]
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not propagated to the output of the model. Indeed, as a consequence of the averag-
ing approach upon which the fuzzy-EM is based, the predictions �̂ of the fuzzy beta 
model are non-fuzzy and they are made at the level of the underlying crisp rating 
mechanism fY (y;�) . This may limit the use of this approach in some circumstances, 
for example when researchers are interested in forecasting fuzziness based on cur-
rent fuzzy data, or rather when components of fuzzy data play a different role in 
predicting the variable response (e.g., modes and precisions/spreads of the outcome 
variable interact with those of the explanatory variables in some way). In all these 
cases, different statistical approaches may instead be preferred, like those based on 
full-likelihood approaches for imprecise data (e.g., see Denoeux 2014; Kanjanata-
rakul et al. 2016) or min–max based estimation methods (e.g., see Guillaume and 
Dubois 2020).

Various possible extensions of our approach can be considered in future works. 
For instance, fuzzy beta model involving fuzzy data with different shapes simultane-
ously (e.g., beta, triangular, trapezoidal) would offer a way to deal with more com-
plex scenarios. Another future generalization which might be interesting to investi-
gate is the case where fuzziness in ratings data is coupled with random uncertainty 
which varies as a function of subgroups in the model (like for CUBE models, see 
Piccolo and Simone 2019). This would offer the opportunity to further decompose 
the overall uncertainty in ratings responses in terms of different and possibly inter-
acting components underlying participants’ rating processes. Finally, an attractive 
extension of the current approach would consider the case of multivariate fuzzy beta 
models where joint fuzzy sets do not obey to the product rule (see Eq. 4). In this 
case, a fuzzy copula representation may instead be used to formally represent the 
joint fuzziness information (e.g., see Ranjbar and Hesamian 2017).
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