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investigate how the winning method may vary over patterns of characteristics of the
data or the data-generating mechanism. Interestingly, this problem bears strong formal
similarities to the problem of looking for optimal treatment regimes in biostatistics when
two or more treatment alternatives are available for the same medical problem or disease.
It is outlined how optimal data-analytic regimes, that is to say, rules for optimally calling
in statistical methods, can be derived from benchmarking studies with simulated data
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Classification trees by means of supervised classification methods (e.g., classification trees). The approach
Comparison of methods is illustrated by means of analyses of data from a benchmarking study to compare two
Data-analytic regimes different algorithms for the estimation of a two-mode additive clustering model.

Supervised learning © 2016 Elsevier B.V. All rights reserved.

1. Introduction

For any statistical or data-analytic process, many choice options are available on the level of the method of preprocessing
of the input, of the actual method of data analysis, and of the method of post-processing the output. An obvious question
in such cases reads which choice alternatives are optimal in some sense. This comes down to a question of comparative
evaluation, the goal of which being to identify the optimal method. This question is crucial for practitioners who may wish
to make good choices in statistical practice. A typical setting to study such a comparative evaluation is that of benchmark
studies, in which simulated or empirical data are used to evaluate several methods under study. A possible result of such
studies is the identification of a universal winning method (i.e., a gold standard).

However, often the winning method varies across types of data sets, with the data sets in question being typified in terms
of structural characteristics (e.g., data size) or of characteristics of the underlying data-generating mechanism (e.g., noise
structure). As an example, Schepers et al. (2006) performed a benchmarking study with simulated data sets to investigate the
sensitivity of different partitioning algorithms to local optima. In this study, at first sight, there appeared to be a universal
winning method with regard to the criterion “proportion of multistart runs that return proxy of global optimum”. Yet,
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subsequently the performance order of the algorithms appeared to change in case of a different data-generating mechanism
for the residuals (viz., one that implied between-residual dependencies). When the winning method varies across types of
data sets, the question “Which method is best?” becomes meaningless and should be replaced by “Which method is best for
which type of data set?” Moreover, the answer to the latter question may also depend on the evaluation criterion that one
is interested in. We will address this issue by looking for rules that indicate which method one should optimally use for a
data set at hand, given some evaluation criterion, and given characteristics of the data set under study and of its underlying
data-generating mechanism. For reasons that will become clear below, we will further call such rules “optimal data-analytic
regimes”.

The identification of optimal data-analytic regimes is quite a challenge as it goes with two major problems. The first
one pertains to the fact that data sets under study may differ from one another on a huge number of characteristics, with
the optimal data-analytic method possibly depending on complex patterns of them. Moreover, often precise hypotheses on
the specific relation between patterns of characteristics and method optimality are lacking; this implies that the types of
data sets across which the winning method varies are to be induced during the actual analysis for identifying optimal data-
analytic regimes. The second problem pertains to the risk of sizeable inferential errors that the identification of optimal
data-analytic regimes may be prone to. On the one hand, these include the possibility that types of data sets across which
the winning method varies are not detected. On the other hand, one should also beware of erroneously ending up with a
nontrivial data-analytic regime while in fact there is a universal winning method.

As a possible solution for these problems, in this paper, we propose a novel methodology to identify optimal data-analytic
regimes. This novel methodology is based in part on principles borrowed from the domain of optimal treatment regime
estimation in biostatistics, that is, the identification of rules that indicate how the optimal treatment alternative may depend
on pretreatment or baseline characteristics of the target patients under study (see, e.g., Zhang et al., 2012). We primarily
focus on optimal data-analytic regimes derived from benchmarking studies with simulated data in which two methods are
compared. Extensions to a comparison of more than two methods and to studies with empirical data, which are not fully
straightforward, will be addressed in the discussion.

The remainder of this paper has been structured as follows. In Section 2, we define a conceptual framework in which
we formalize the problem at hand, and we introduce the novel methodology. We illustrate with data from a benchmarking
study to compare two algorithms for estimating a two-mode additive biclustering model in Section 3. Discussion points and
concluding remarks are given in Section 4.

2. Framework and methodology

2.1. Benchmarking study with simulated data

In this paper we focus on benchmarking studies with data that have been simulated according to a full factorial design.
The factors X of this design pertain to characteristics of the data and the data-generating mechanism (e.g., data size, nature
and complexity of data-generating mechanism, noise level, and noise structure). For each combination of levels of the
factors under study, a number r of simulated data sets is generated. Subsequently, each simulated data set is analyzed
with the two methods that are to be compared. These may be methods of pre-processing of input, actual methods of data
analysis, or methods of post-processing of output (including model selection heuristics). Subsequently, some outcome of
interest, Y, is evaluated. Variable Y may pertain to optimization performance, technical quality (e.g., computational cost,
stability, replicability), recovery performance (i.e., recovery of aspects of the underlying true model, such as the true level of
complexity of this model or true parameter values), or performance with regard to possible other goals of the data analysis
(e.g., predictive quality, relation with external criterion variables). All this implies that the data for the optimal data-analytic
regime estimation are the values of an outcome variable Y for data from a mixed factorial design with as between-factors
characteristics of the data and the data-generating mechanism (X), with a binary within-factor A pertaining to method
(taking values 0 and 1), and with r replications per cell of the design.

2.2. Data-analytic regimes

Given data from a benchmarking study as outlined above, a data-analytic regime is a function g that maps the value set
of characteristics of the data and the data-generating mechanism X to the values of A. This function formalizes the rule that
a data set with pattern of data characteristics X is to be analyzed with Method 0 if g(X) = 0 and with Method 1if g(X) = 1.

Let Y denote the outcome of a data set subjected to Method a. Then, the outcome that would result from assigning a
data-analytic method to a randomly chosen data set according to g is given by

YE® = ylg(X) + Y°[1 — g(X)].
Assuming, without loss of generality, that larger values of Y are more desirable, the optimal data-analytic regime then is
the one leading to the largest expected outcome E(Y$®)) when applied to the population of data sets under study. In what

follows, we will focus on a pre-specified class of data-analytic regimes denoted by ¢¥. Given ¢, we may define the optimal
data-analytic regime, g°*(X), as the one leading to the largest value of E(Y¢®) among all g € ¥, that is to say,

g°"(X) = argmax,.o E(Y$X).
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Table 1
Four types of characteristics of the data and the data-generating mechanism in benchmarking
studies with simulated data.

Manipulated in simulation study Known in data-analytic practice

No Yes
Yes (a) (b)
No (0 (d)

In estimating the optimal data-analytic regime given data from a benchmarking study with simulated data, different
types of characteristics of the data and the data-generating mechanism can be considered for X. The most obvious type
consists of characteristics that are manipulated in the benchmarking study. At this point, however, two complications
may arise: First, besides the manipulated characteristics, other sources of variation may be relevant for the optimal data-
analytic regime. As an example, the skewness of some variables in the simulated data might not have been directly
manipulated by the investigator, whereas it may differ across simulated data sets and influence the performance of data-
analytic methods. Otherwise, unmanipulated characteristics can either fluctuate at random across the simulated data sets,
or they can be manipulated indirectly through the characteristics of the data and data-generating mechanism that have
been varied experimentally by the researcher. Second, characteristics that are known in a Monte Carlo simulation setting
may be unknown in data-analytic practice. As an example, characteristics such as noise level and noise structure are often
experimentally varied in simulation studies, yet, they are typically unknown for empirical data sets outside a simulation
context. If estimated optimal data-analytic regimes would rely on such characteristics of the data and the data-generating
mechanism that are unknown in data-analytic practice, the regimes in question could not be readily used by practitioners
to determine the optimal method for a data set at hand.

Summing up, by combining the two facets outlined above, four types of characteristics of the data and the data-generating
mechanism may be distinguished (see Table 1). In the estimation of optimal data-analytic regimes, there is a clear preference
for regimes that rely on characteristics that are known to the practitioner outside a Monte Carlo context (cells (b) and (d)
of Table 1). Besides, from the viewpoint of inferential certainty, there may be some preference for characteristics that have
been manipulated (cells (a) and (b)) over characteristics that have not been manipulated (cells (¢) and (d)).

2.3. Estimation of data-analytic regimes

To obtain an estimator g°°* for g°Pt, we will rely in part on earlier work on the identification of optimal treatment
regimes in the field of biostatistics (Zhang et al., 2012). We will first transform the problem of estimating optimal data-
analytic regimes into a weighted classification problem, which will allow us to use existing classification techniques to
estimate optimal data-analytic regimes. Subsequently, we will propose a stepwise procedure to estimate optimal data-
analytic regimes that are useful in data-analytic practice (i.e., that involve characteristics in cells (b) and (d) of Table 1).

To transform the problem of estimating optimal data-analytic regimes into a weighted classification problem, we observe
that

E(Y!®) = E{Y'g(X) + Y°[1 — g(X)]}
= E{gX[Y' — Y] + Y%
= E[g(X)C(X) + Y°], (1)

where C(X) = Y! — Y is a so-called contrast function that denotes for each data set the difference in measured outcome
between Method 1 and Method 0. It follows that g°P*(X) = arg max,., E(Y¥®)) = arg max,., E[g(X)C(X)]. Next, because
CX) =I[C(X) > 0]|CX)| — I[C(X) < 0]|ICX)]|, g(X)C(X) can be rewritten as

gX)C(X) = g(X)I[C(X) > 0]|CX)| — gX)I[C(X) = 0]|C(X)|
=1[C(X) > 0]|CX)| — [CX)[{[1 — gX)I[C(X) > 0] + g(X)I[C(X) = O]}
As g (X) takes values {0, 1},
[1—gX)UICX) > 0] +gXI[C(X) < 0] = {I[C(X) > 0] — g(X)}.
Combining these results, g(X)C(X) can be rewritten as
gX)C(X) =I[C(X) > 0]|C(X)| — [CX){I[C(X) > 0] — g(X)}*.
Therefore, the optimal data-analytic regime can be estimated as
g (X) = argmaxycq E[g(X)C(X)]
= argmaxgcy [E{I [C(X) > 0] ICX)[} — E(IC){I[C(X) > 0] —g(X)}*)]
= argming.y E(ICX)I{I [C(X) > 0] — g(X))?). (2)



84 L.L. Doove et al. / Computational Statistics and Data Analysis 107 (2017) 81-91

At this point, Z = I[C(X) > 0] can be considered a known classification variable that defines two classes of data sets: (a)
the class Z = 1 which comprises those data sets for which the outcome is higher under Method 1(Y! > ¥?), and that should
therefore be preferably analyzed with this method, and (b) the class Z = 0 that comprises those data sets with Y* > Y,
and that should therefore be preferably analyzed with Method 0. Each data set is also given a weight W = |C(X)|, which
represents the loss that would be incurred if the data set were misclassified.

The above implies that the information contained in C(X) is separated into two parts: the class label Z, containing
the information about the sign of C(X); and the weight W, containing the information about the magnitude of C(X). The
estimation of the optimal data-analytic regime g° via (2) then comes down to

N
8P (X) = argmingeyy Y WilZi — g(X)T,
i=1

which is a weighted classification problem. This problem can then be solved by means of a broad range of existing supervised
classification methods (e.g., kernel methods, support vector machines, neural networks, and classification trees).

Importantly, in a benchmarking setting, a single data set can always be subjected to the different method alternatives
(which implies that method can act as a within-subject or repeated measures variable). As a result, the contrast function
C(X) (and hence the class label Z and weight W) for each data set is fully known. This is different from the setting of
optimal treatment regime estimation, where the application of different treatment alternatives typically is a between-
subject variable, which implies that the contrast values C(X) are inherently unknown and are therefore to be estimated
from the data (Zhang et al., 2012).

2.4. Procedure to construct workable data-analytic regimes

Taking into account the four types of characteristics of the data and the data-generating mechanism as summarized in
Table 1, in order to arrive at an estimated optimal data-analytic regime that is workable in data-analytic practice, we propose
the following stepwise procedure:

1. Estimate an optimal data-analytic regime using all manipulated characteristics

The first step is to estimate an optimal data-analytic regime g°P(X) using all manipulated characteristics of the
data and the data-generating mechanism (cells (a) and (b) of Table 1). Optionally, one may include unmanipulated
characteristics, either for exploratory purposes, or because one theoretically expects particularly such characteristics
to influence the performance of the data-analytic alternatives.

2. Estimate proxies for the relevant characteristics that are unknown in data-analytic practice, and estimate a second
optimal data-analytic regime using only known characteristics

As mentioned before, the estimated optimal data-analytic regime resulting from Step 1 may possibly involve
characteristics of the data and the data-generating mechanism that are unknown in data-analytic practice (cell (a)). As
a result, the resulting data-analytic regime may not be workable for practitioners to determine the optimal method for
data sets in empirical practice. The second step is to estimate so-called proxies for the characteristics that appeared to
be relevant in the estimated optimal data-analytic regime resulting from Step 1, but that are unknown in data-analytic
practice (cell (a) of Table 1). These proxies are known (and typically unmanipulated) characteristics of the data (cell (d))
that can be considered reasonable estimates of the unknown characteristics on the basis of the previously derived optimal
data-analytic regimes. As an example, the noise level in the data could be estimated on the basis of replicates (if present
in the data) or on the basis of some model estimation procedure. After replacing the relevant characteristics in cell (a) by
known reasonable estimates in cell (d), one should then re-estimate the optimal data-analytic regime while using only
characteristics that are known in data-analytic practice (cells (b) and (d)). Optionally, one could force the classification
algorithm to use the proxies in the estimation process. In case the re-estimated data-analytic regime would not be similar
to the original data-analytic regime derived in Step 1, one may wish to look for other proxies of the relevant characteristics
in cell (a).

3. Testing the resulting regimes (optional)

If the estimation results in a nontrivial data-analytic regime, this suggests the presence of a qualitative or disordinal
data set type by method interaction, meaning that for some types of data sets Method 1 outperforms Method 0, whereas
for other types of data sets the reverse holds true. Rather than considering at this point tests for specific data types
(which are prone to multiple testing problems — see, e.g., Lagakos, 2006), one may wish to check this by a global test of
the null hypothesis of absence of a qualitative or disordinal interaction. For this purpose, one may make use of suitable
test statistics such as the one proposed by Gail and Simon (1985). Two issues should be taken into account at this point:
Firstly, the test in question would be a pseudo test as the set of types of data sets across which the optimal method might
differ has been induced by estimating a data-analytic regime from the same data as the ones used for the hypothesis
testing (which inflates the probability of false positives). Secondly, tests of the hypothesis that an interaction is disordinal
generally lack statistical power (Brookes et al., 2001; Rothwell, 2005; Shaffer, 1991). In the context of benchmarking
studies with simulated data sets, however, the latter should not be expected to be a problem as simulation studies
typically allow for large sample sizes.
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4. Cross-validate the results in replication studies (optional)

The proposed optimal regime estimation procedure can be considered an exploratory post-hoc method. Hence, it
should be looked at as a hypothesis-generating device, the results of which are to be cross-validated in replication
studies. In such replication studies, variables that were not experimentally manipulated in the original benchmarking
study (cells (c) and especially (d) of Table 1), and that showed up in the basis of the regimes resulting from Step 1, should
be experimentally manipulated.

As a final note, it is important to emphasize that optimal data-analytic regimes should preferably go with sound
theoretical justifications. For this purpose, it is also important to include in the design of simulation research for
benchmarking characteristics that can theoretically be expected to influence the performance of the data-analytic methods
under study.

3. Illustrative application

3.1. Data

We applied the newly proposed method for optimal data-analytic regime estimation to data from a benchmarking study
by Wilderjans et al. (2013b) on additive biclustering. The authors considered (real-valued) object by variable data sets,
for which they wanted to estimate an additive biclustering model (Baier et al., 1997; DeSarbo, 1982). This model implies:
(a) (possibly overlapping) biclusters (i.e., Cartesian products of object and variable clusters), (b) a (real-valued) weight for
each bicluster, and (c) that the reconstructed value for object i on variable j equals the sum of the weights of all biclusters
to which (i, j) belongs. In the associated data analysis, the additive biclustering model is fitted to a given data set by means
of minimizing a least squares loss function.

More formally speaking, additive biclustering with K object clusters and L variable clusters implies that a real-valued
I x J object by variable data matrix X is approximated by an I x J real-valued model matrix M that can be decomposed into
a binary (0/1) object cluster membership matrix A and a binary variable cluster membership matrix B of sizes I x K and
J x L, respectively, and a real-valued K x L weight matrix V:

M = AVB'.

Given an I x J data matrix X, and numbers of underlying object and variable clusters K and L, the aim of an additive
biclustering analysis is to estimate binary matrices A and B and a real-valued matrix V such that the least squares loss
function

F(A,B,V) = |X — AVB'||}, (3)

is minimized, with || X — AVB/||£ denoting the Frobenius norm of a matrix. To this end, two alternating least squares
algorithms (ALS) have been proposed: PENCLUS (Both and Gaul, 1985, 1987; Gaul and Schader, 1996), and the Clusterwise
ALS approach of Baier et al. (1997). The main difference between these two approaches is that PENCLUS works with a
penalized (auxiliary) loss function and operates in a (relaxed) continuous space, whereas Clusterwise ALS optimizes the
original biclustering loss function in Eq. (3) directly and operates in the original solution space. Wilderjans et al. (2013b)
evaluated the performance of these ALS algorithms in a simulation study.

The simulation study involved a full factorial design that was set up as follows. Data sets X were generated by
independently generating true object cluster membership matrices A, true variable cluster membership matrices B¢,
true weight matrices V¢, and noise E. We refer to Wilderjans et al. (2013b) for details on how the entries of A€, Biue  ytrue,
and E were drawn. A data set X was then obtained as X = T + E, with T = A"™¢V™¢(B"¢)" and T being the true underlying
clustering model. In the data set generation, six factors were manipulated: the shape of X (three levels), the number of object
clusters (three levels), the number of variable clusters (three levels), the amount of object cluster overlap (three levels), the
amount of variable cluster overlap (three levels), and the amount of noise (five levels). Regarding the shape of X, this was
defined in terms of the ratio I /] of the number of objects to the number of variables, and took values of 1/4, 1, and 4. The
total number of entries in X was kept fixed at 4096, which implied three different values for I x J: 32 x 128, 64 x 64, 128 x 32.
Regarding the number of object and variable clusters, these both took values of 2, 3, and 4 (which can be considered a rather
restricted set of numbers of clusters). The amount of both object and variable cluster overlap was defined as the probability
of an object (variable) belonging to more than one object (variable) cluster, and was put equal to 25%, 50%, or 75%. Regarding
the amount of noise, this factor was defined as the proportion ¢ of the total variance in the data X accounted for by E and
was either 0, 0.15, 0.30, 0.45 or 0.60. Note that the shape of X is a characteristic of type (b) (known in data-analytic practice,
see Table 1), whereas the other factors manipulated in the simulation study are of type (a) (i.e., not known in data-analytic
practice).

All design factors were fully crossed, which yielded 1215 combinations. For each combination, 10 replicates were
generated, yielding N = 12 150 simulated data sets in total. Subsequently, each simulated data set X was analyzed with
PENCLUS and Clusterwise ALS, resulting in estimates A, ﬁ, V for both algorithms. Outcome variables in the simulation study

included a measure of recovery of Tby M = AVB/, recovery of the true overlapping clustering A™¢ by A (object cluster
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recovery), recovery of the true overlapping clustering B¢ by B (variable cluster recovery), and recovery of the weights
matrix V& by V. In order to not confound the evaluation of the outcome variables with a possibly inadequate model
selection procedure for selecting the number of object and variable clusters, in the simulation study the algorithms were
assumed to be applied with a perfect model selection procedure. As such, the algorithms were applied to the simulated data
sets with the number of object and variable clusters put equal to their true values; hence, the recovery of the true structure
underlying the data sets could be evaluated in a meaningful way. In the present application, we focus on goodness-of-
recovery of the weights matrix V"¢ (GOW) as outcome variable. To evaluate GOW, the following measure was calculated:

K L )
/ “Z](Ukl — )
k=1 I=
1- K L ) (4)
Z(UZUE _ {)true)Z

Il
-

k=11=1

with 9" the average value of V™€, GOW was then defined as the minimum value of Eq. (4) over all possible row and column
permutations of V; this measure takes values in the interval (—oo, 1], with a value of 1 meaning perfect recovery.

3.2. Analysis strategy

We estimated optimal data-analytic regimes through the stepwise procedure proposed in Section 2.4. That is, as a first
step, we estimated the optimal data-analytic regime using all manipulated characteristics. As a second step, we subsequently
estimated proxies for the characteristics that appeared to be relevant in the estimated regime resulting from Step 1 but that
would be unknown to practitioners outside a Monte Carlo context. That is, we replaced the relevant characteristics in cell
(a) of Table 1 by related variables in cell (d), and we subsequently estimated an optimal data-analytic regime involving only
characteristics that are known in data-analytic practice (cells (b) and (d)).

In order to estimate optimal data-analytic regimes using all manipulated characteristics, we first constructed a contrast
function C(X;) fori = 1, ..., N. As contrast function C(X), we calculated for each data set the difference in GOW between
Clusterwise ALS and PENCLUS. Once we obtained the contrast function for each data set, C(X;), we derived the class labels
Z; = I[C(X;) > 0], and the weights W; = |C(X;)| for each data set, to obtain the classification data set {Z;, X;, W;}.

Subsequently, we estimated g°*(X;) as §°P'(X;) = arg min, .., Zf’: 1 WilZ: — g(X)]?, where the minimization is across
all regimes in the class of regimes under study. For this minimization, we used classification trees (e.g., Hastie et al., 2009),
which yield tree-based data-analytic regimes; such regimes are of particular interest as they go with a straightforward and
most insightful representation of the decision structure underlying the regimes in question. In particular, we focused on
regimes based on a tree structure with binary splits defined in terms of dichotomized characteristics of the data and the
data-generating mechanism. The splits result in a finite set of nodes, which comprises a root node, internal nodes and leaves
(or terminal nodes). Data-analytic regimes that rely on such a tree structure imply that decisions with regard to assignment
of the methods under study are based on leaf membership. Let S,(£ = 1, ..., L) be the leaves associated with such a tree,
with the leaves being defined in terms of conjunctions of thresholded characteristics of the data and the data-generating
mechanism, such as, for example, [(X; > b) and (X; < c)]. A tree-based data-analytic regime gr can then be formalized as
a function, gr : {S1,...,S¢, ..., S} — {0, 1}.

The procedure for estimating tree-based data-analytic regimes was implemented in R, using the rpart package for
fitting a classification tree (Therneau et al.,, 2013). We input the classification data set {Z;, X;, W;} into rpart and adopted
the default settings, except that we put the weights equal to the entries of W;. The resulting classification tree was finally
pruned back using the cross-validation procedure described by Hothorn and Everitt (2009).

Finally, if the estimation would end up in a nontrivial data-analytic regime, this would suggest that the data sets
are involved in a qualitative or disordinal interaction, implying that for some types of data PENCLUS would outperform
Clusterwise ALS, whereas for other types it would be the other way around. In this case, we will test the hypothesis that the
interaction is disordinal, indeed.

3.3. Results and discussion

The classification tree resulting from the first step is displayed in Fig. 1. It appears that for data sets with a higher amount
of noise one should preferably use Clusterwise ALS. This also holds for data sets with a lower amount of noise if the true
number of object clusters is small. On the other hand, for data sets with a lower amount of noise one should preferably use
PENCLUS if the true number of object clusters is not too small. We may thus conclude that the most important moderators of
the differential performance of Clusterwise ALS and PENCLUS are amount of noise and number of object clusters. Regarding
the number of object clusters, this result may be related to the fact that PENCLUS operates in a (relaxed) continuous space
while Clusterwise ALS operates in the original solution space. When there is only a small number of underlying clusters,
that is to say, when the original solution space is small, operating in this space appears to be better than operating in some
(relaxed) continuous space. However, when there are many underlying clusters (i.e., when the original solution space is
large), Clusterwise ALS may not be moving in an efficient way throughout that space and may get lost in it. Making use of
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{.45, .60}

g°Pt = Clusterwise ALS

GOW, s = 0.808
GOWpeyciys = 0.676

3,4

Number of
object clusters

g°Pt = Clusterwise ALS g°Pt =PENCLUS
GOW, = 0.858 GOW, 5= 0.786
GOW,eyous = 0.831 GOW,eycus = 0.880

Fig. 1. Optimal data-analytic regime for the additive biclustering data resulting from the newly proposed method using classification trees. The ellipses
in the figure represent the internal nodes containing the split variables, with the corresponding split point shown below each ellipse. The upper ellipsis
represents the root node, which corresponds to the complete set of data sets from the benchmarking study. The rectangles represent the leaves of the tree,
with each rectangle containing the assigned method, and the conditional mean outcomes under Clusterwise ALS (C-ALS) and PENCLUS.

the test for disordinal interactions developed by Gail and Simon (1985), we can reject the null hypothesis of no disordinal
interaction at significance level « = 0.001.

As the true number of object clusters and the amount of noise are manipulated characteristics of the data that are not
known in data-analytic practice (cell (a) of Table 1), we identified proxies for these characteristics in order to estimate a
data-analytic regime that can be usable in data-analytic practice. (For clarity’s sake, these proxies are characteristics in cell
(d) of Table 1.) To identify a proxy for the number of object clusters we fitted a one-mode clustering model (viz., an additive
profile clustering model, ADPROCLUS: Depril et al., 2008; Wilderjans et al., 2011) to the simulated data sets along with an
automated convex hull-based procedure (Ceulemans and Kiers, 2006; Wilderjans et al., 2013a) to determine the number of
underlying object clusters. The latter number then serves as proxy for the number of object clusters KP™*. It should be noted
that this proxy was used in the estimation of the second data-analytic regime but not for the number of object clusters used
in the analyses of the simulated data sets with Clusterwise ALS and PENCLUS. This means that the proxy was only used to
decide on the optimal type of method, and not to choose the number of clusters in the application of this method. It should
further be noted that, in practice, a model selection procedure should be specified to estimate the number of object and
variable clusters in order to analyze a data set with Clusterwise ALS or PENCLUS.

To identify a proxy for the percentage of noise in the data, we relied on the object cluster membership matrix A that
resulted from the ADPROCLUS analysis mentioned above with KP object clusters. To obtain also a variable cluster matrix
B for each data set, we subjected the transposed data X’ to ADPROCLUS, while again using the automated CHull procedure
to select the number of variable clusters. We subsequently calculated Vas

V = (ATA)tA"XB(B'B)*,

with (P)* being the Moore-Penrose pseudoinverse of P. Next, we calculated as a proxy for the percentage of noise in the
data,

X — AVBT ||2
[1X]|2

proxy __
- ’

where ||P||? indicates the squared matrix norm of P.

The classification tree resulting from the second analysis with the proxies for ‘amount of noise’ and ‘true number of object
clusters’ as predictors is displayed in Fig. 2. Interestingly, this tree has the same structure as the tree based on the originally
manipulated characteristics, which gives confidence in the result and the quality of the estimated proxies. The expected
outcome of the estimated optimal data-analytic regime in Fig. 2 using Eq. (1) is 0.844. For comparison, the expected outcome
would equal 0.809 if the marginally best method, Clusterwise ALS, were applied to all 12 150 data sets, and 0.788 if PENCLUS
were applied to all of them. This means that, although the strategy of analyzing all data sets with Clusterwise ALS would
result in an improved outcome relative to analyzing them with PENCLUS, there is added benefit to analyze them on the basis
of the estimated optimal data-analytic regime.

By way of comparison, we also estimated optimal data-analytic regimes on the remaining three outcome variables
included in the simulation study by Wilderjans et al. (2013b) (the trees are given in the Appendix). It appears that the
estimated regime based on outcome variable GOW (Fig. 1) and the estimated regime based on the recovery of Tby M = AVB'
imply two (almost) identical splits on ‘amount of noise’ and ‘true number of object clusters’. The two estimated regimes
based on object cluster recovery and variable cluster recovery are also interrelated in many ways. However, these regimes
are considerably more complex compared to the regimes based on GOW and on the recovery of T. This nicely illustrates that
the optimal regime may depend on the chosen outcome measure.
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Fig. 2. Optimal data-analytic regime with replacement of noise and true amount of object clusters by proxies that are known in data-analytic practice.

A final remark pertains to the classification tree method that we used to estimate the data-analytic regimes in the
application. Such methods are cursed by a limitation: Their search space is very large by the large number of possible
split variables and the large number of possible split points per variable. This may result in instable solutions. There are
several ways in which the instability of classification trees can be quantified. Examples include using a bagging procedure,
where a set of trees is grown based on different bootstrap samples or subsamples of the data (Breiman, 1996), and
subsequently calculating a measure of instability on this set of trees (Chipman et al., 1998). A previously suggested solution
for the instability problem is the use of random forests. However, a key advantage of tree-based regimes (i.e., an insightful
representation of the underlying decision structure) then gets lost. An interesting potential course of action to overcome
this could be to look for a precis of a random forest in terms of a single summary tree.

4. General discussion

In the present paper we introduced a novel conceptual framework and methodology, inspired by principles of optimal
treatment regime estimation, to derive optimal data-analytic regimes from benchmarking studies with simulated data. Over
and above the search of a universally winning method, this methodology provides the user with a more refined answer to
questions of benchmarking in terms of how the winning method may vary over patterns of characteristics of the data and
the data-generating mechanism.

In general, optimal regime estimation is fairly challenging due to the high risk of inferential errors. The underlying reason
for this high risk is that (nontrivial) optimal regimes critically depend on qualitative or disordinal interactions, which imply
that for some types of data, method A outperforms B, whereas for other types it is the other way around. This type of
interactions is typically hard to replicate (Rothwell, 2005). The reason for this does not reside in particular methods, but in
the mere fact that a reliable estimation of qualitative or disordinal interactions requires (very) large sample sizes (Lee et al.,
2015). A particular advantage of benchmarking studies with simulated data that may provide the basis for optimal data-
analytic regime estimation is that they rather easily allow for large sample sizes, with the primary cost being computational
in nature only (which in the present era of supercomputers has become less prohibitive than ever before).

Arelated issue is that exploratory post-hoc methods like the optimal regime estimation methods discussed in the present
paper should be looked at as hypothesis-generating devices, the results of which are to be cross-validated in replication
studies. Once again such replication studies are cheaper and therefore easier to realize in the benchmarking area compared to
the area of randomized clinical trials. Two special types of replications deserve to be singled out at this point: (a) replication
studies with stratified sampling schemes, with strata corresponding to the data types identified during the optimal data-
analytic regime estimation, and (b) replication studies in which variables that were not experimentally manipulated in the
original benchmarking study (cells (c) and especially (d) of Table 1) and that appeared to be involved in the regime resulting
from that study, are experimentally manipulated in the follow-up replication study.

In this paper, we focused on benchmarking studies in which two methods are compared. We showed that in such
cases, optimal data-analytic regimes can be estimated by using existing classification techniques that minimize some
misclassification cost. In our case, the misclassification cost is data set-dependent and denotes the loss in outcome would
a data set be assigned to its non-optimal method alternative. In the illustrative application, we further focused on methods
to estimate optimal tree-based data-analytic regimes. Typical tree-based classification techniques assume misclassification
costs to be the same for all objects that are to be classified (viz., in our case, for all data sets). As a solution to work around the
issue of data set-dependent costs, we made use of the fact that in quite a few tree algorithms every object can be assigned a
weight. By putting these weights equal to the individual misclassification costs, application of the tree-based classification
techniques in question will imply a minimization of the total misclassification cost.

One may wonder how benchmarking studies in which more than two methods are compared could be dealt with, and
whether our proposed approach to estimate data-analytic regimes could be extended to such cases. At this point it is relevant
to know that (Doove et al., 2016) recently showed that optimal treatment regime estimation in the context of more than
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Fig. A.1. Optimal data-analytic regime for the additive biclustering data resulting from the newly proposed method using classification trees with as
outcome measure a measure of reconstruction of T (GOF). The rectangles represent the leaves of the tree, with each rectangle containing the assigned
method, and the conditional mean outcomes under Clusterwise ALS (C-ALS) and PENCLUS.

two treatment alternatives is also a classification problem in which some total misclassification cost is to be minimized. As
in the binary case, the misclassification cost is object-dependent. In addition, the costs now also depend on the alternative
to which an object is assigned. Importantly, to solve the resulting object- and alternative-dependent classification problem
within a context of the estimation of tree-based regimes, it is no longer possible to rely on an object-based weighting.
However, Doove et al. (2016) proposed an extension of a set of tree-based classification techniques to deal with object-
and alternative-dependent classification costs, and implemented for this extension an R code add-on to a well-established
package for classification tree estimation, rpart (the code of which can be obtained from the first author).

The proposed method may be further extended in two ways. First, as method acts as a within-subject variable in
benchmarking studies, a difference score can be used as a straightforward estimator of the contrast function C. In optimal
treatment regime estimation, however, the use of more involved estimators, which include an augmentation with a term
borrowed from an outcome model, may be necessary (Zhang et al., 2012). It would be meaningful to explore whether a
similar augmentation could still further improve the quality of estimated optimal data-analytic regimes.

Secondly, we discussed the estimation of optimal data-analytic regimes on the basis of data from benchmarking
studies relying on “synthetic” Monte Carlo simulations. There are no principled objections against the application of the
methodology proposed in the present paper to benchmarking studies based on empirical data (which could be considered a
sample from a population of data sets: Boulesteix et al., 2015). Yet, two considerable pragmatic bottlenecks need to be taken
into account: (a) The sample size of benchmarking studies with empirical data is typically prohibitively low, and an increase
of that sample size is considerably more expensive than in the case of simulated data; (b) inferences may be hampered by
correlations between data characteristics across the empirical data sets. Having taken these bottlenecks into account, a full
estimation of optimal data-analytic regimes on the basis of benchmarking studies with empirical data does not look like
a realistic option. As a more realistic alternative, the data sets of such studies could be used as a test bench to investigate
optimal data-analytic regimes that were previously derived from benchmarking studies with simulated data sets. In case the
application to the test bench would lead to unexpected discrepancies with the results of the simulated data sets, this could
subsequently give rise to the setting up of new benchmarking studies with simulated data sets that mimic in one way or
another the empirical data sets of the test bench (for an illustration of this principle, see Schepers et al., 2006). Otherwise, in
case the primary interest of the researcher resides in outcome measures of a recovery type (as in our illustrative application),
a straightforward test on empirical data is not possible either. Yet, in such cases, too, one could consider to set up “realistic
simulation studies” with a test bench of simulated data sets that mimic in some way empirical data sets of interest.

A final remark pertains to the emphasis that has been put in this paper on the perspective of the practitioner who
appreciates pragmatic rules to choose the best data-analytic method for a data set at hand given known characteristics
of that data set (which implies quite some emphasis on the “what” of the optimal data-analytic regimes). Yet, the “why” of
the regimes in question (i.e., the theoretical justification of why a particular method outperforms another one for certain
types of data sets) should not be neglected at all. Insight into this “why” may simply lead to more sound regimes that can
be extended more easily to new types of data sets.
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Fig. A.2. Optimal data-analytic regime for the additive biclustering data resulting from the newly proposed method using classification trees with as
outcome measure object cluster recovery (w”). The rectangles represent the leaves of the tree, with each rectangle containing the assigned method, and
the conditional mean outcomes under Clusterwise ALS (C-ALS) and PENCLUS.
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Fig. A.3. Optimal data-analytic regime for the additive biclustering data resulting from the newly proposed method using classification trees with as
outcome measure variable cluster recovery (w?). The rectangles represent the leaves of the tree, with each rectangle containing the assigned method, and
the conditional mean outcomes under Clusterwise ALS (C-ALS) and PENCLUS.

Appendix

In this Appendix, we present estimated optimal tree-based data-analytic regimes with as outcome measures a measure
of reconstruction of T by M = AVB' (Fig. A.1), object cluster recovery (Fig. A.2), and variable cluster recovery (Fig. A.3).
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