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Abstract Fuzzymodeling and fuzzy statistics provide use-
ful tools for handling empirical situations affected by vague-
ness and imprecision in the data. Several fuzzy statistical
models and methods (e.g., fuzzy regression, fuzzy principal
component analysis, fuzzy clustering) have been developed
over the years. Generally the standard LR-fuzzy data repre-
sentation has been used in these methods. However, several
empirical contexts, such as human ratings and decision mak-
ing, may show more complex fuzzy structures which cannot
be successfullymodeled by theLR representation. In all these
cases another type of fuzzy data representation, the so-called
LHIR representation, should be preferred instead. In particu-
lar, this novel representation allows to handle with fuzzy data
which are characterized by non-convex membership func-
tions. In this paper, we address the problem of summarizing
large datasets characterized by two-mode non-convex fuzzy
data. We introduce a novel dimension reduction technique
(NCFCA) based on the framework of Component Analysis
and Least squares programming. Finally, to better highlight
some important characteristics of the proposed model, we
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1 Introduction

In many research fields such as, for example, behavioral and
social sciences, epidemiology, bioinformatics, engineering,
and astronomy, researchers often have to deal with high-
dimensional datasets which are usually represented by n
(units) × m (variables) matrices. Country statistical profiles,
socio-economic tables, chemical databases, survival tables,
and self-report questionnaires, are all examples of this type
of data structures (Eriksson 2006). In these contexts, it may
be useful to reduce the dimensionality/complexity of large
datasets. This may happen, for instance, when a researcher
wants to enhance the efficiency and accuracy of a data analy-
sis, or when s/he wants to extract the most relevant infor-
mation from the available data. In all these cases, several
dimension reduction techniques such as, for instance, Prin-
cipal Component Analysis, Independent Component Analy-
sis, Multidimensional Scaling, Cluster Analysis, and Latent
Semantic Analysis, are available to perform statistical analy-
sis on large data structures (Hastie et al. 2001). Among these
options, Principal Component Analysis (PCA) is a well-
known and widely used unsupervised variables transforma-
tion technique for linear dimensionality reduction. Its aim is
to summarize a n ×m data matrix into a new n × p reduced
model matrix (with p � m) which reconstructs the infor-
mation contained in the original data (Abdi and Williams
2010).Usually, PCAcan be performed using differentmathe-
matical procedures like, eigenvalues decomposition, singular
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values decomposition, low-rank approximations, and com-
ponent analysis.

PCA has beenmainly applied to standard crisp data. How-
ever, some researchers have extended the PCA framework
also to more complex data (e.g., interval, symbolic, or fuzzy)
to better model variables with vague and imprecise infor-
mation (Lauro and Palumbo 2000; Douzal-Chouakria et al.
2011; Taheri 2003; Viertl 2011). A natural way to model
imprecision and vagueness in empirical data is by means of
the so-called fuzzy sets (Zimmermann 2001).

Conventionally, fuzzy sets have been described by LR-
type representations (Dubois et al. 1988) which is primarily
used for modeling convex-shaped fuzzy objects. However,
in some empirical contexts like, human decision making and
ratings, convex representations might not be capable to cap-
ture more complex structures in the data. A case of particular
interest in such situations concerns some features of human
judgments that are characterized by high levels of uncertainty
in individuals’ responses or evaluations. In solving decision-
making problems, some individuals may largely hesitate in
providing their responses. For example, in decision-making
tasks it is not rare to observe response patterns in which
uncertainty is related to the individual’s choice between two
possible alternatives (relevant options) among a larger set of
alternatives (irrelevant options) (e.g., Greene andHaidt 2002;
Magnuson 2005; Weber and Johnson 2009). Clearly, in this
context convex representations are inappropriate to describe
this type of information. Moreover, non-convexity seems to
arise as a natural property in many applications based on
fuzzy systems, such as fuzzy decisionmaking and expert sys-
tems (Calcagnì et al. 2014; Garibaldi et al. 2004; Facchinetti
and Pacchiarotti 2006; Reuter 2008). In this framework, the
use of standard LR-type representations could be question-
able. A possible way out consists in adopting ad-hoc data
manipulation procedures to transform non-convex data into
standard convex representations (e.g., using Graham Scan
algorithm or Steiner symmetrization). However, one seri-
ous limitation of these data transformation procedures is
that they can artificially mask relevant information carried
out by the non-convexity property. Unfortunately, reduction
dimension techniques for analyzing non-convex fuzzy data,
as far as we know, have not been proposed yet in the lit-
erature. In this article we present a novel dimension reduc-
tion technique, called non-convex fuzzy component analysis
(NCFCA), which is based on the frameworks of Compo-
nent Analysis, CA (Meredith and Millsap 1985; Millsap and
Meredith 1988) and standard least squares (LS) (Diamond
1988; Giordani and Kiers 2004). Unlike other fuzzy mod-
eling procedure, NCFCA always guarantees a direct model-
ing of multidimensional fuzzy data with non-convex shapes
based on 2-mode representations.

The reminder of the article is organized as follows. The
second section is devoted to briefly recall the basic character-

istics of convex as well as non-convex fuzzy data. The third
section exposes the component analysis for non-convex fuzzy
data together with its main features. Moreover, this section
also describes some useful procedures for data fitting and
model evaluation. The fourth section illustrates three appli-
cations of the proposedmethod to somebehavioral and socio-
economic data collected using different procedures (e.g.,
fuzzy scales of measurement and fuzzy measurement sys-
tems). Finally, the fifth section concludes this article provid-
ing some final remarks and suggestions for future extensions
of our approach.

2 Non-convex fuzzy data

Before introducing the formal representation of non-convex
fuzzy data, we briefly recall some basic features of the LR
representation. In general, a fuzzy set Ã can be described by
its α-sets Ãα = {x ∈ U | μ Ã(x) > α} with α ∈ ]0, 1]
and whereU and μ Ã indicate the universal set and the mem-
bership function of Ã, respectively. If the α-sets of Ã are all
convex sets, then Ã is called a convex fuzzy set. The support
of Ã is denoted by Ã0 = {x ∈ U | μ Ã(x) > 0} whereas the
collection Ãg = {x ∈ U | μ Ã(x) = maxy∈U μ Ã(y)} of all
its maximal points is called the core of Ã. The height of Ã is
defined as hgt ( Ã) = max [μ Ã(x)], and if hgt ( Ã) = 1, then
Ã is also called anormal fuzzy set.Now, if Ã satisfies the con-
ditions of normality, convexity, and unimodality (the core is
a singleton), then Ã is named LR-fuzzy number (Hanss 2005)
and can be denoted by ã. Moreover, themembership function
of ã can be described by a couple of monotonic decreasing
and left-continuous smooth functions L and R. Using these
functions one can represent ã by a specific parametric rep-
resentation. Note that different types of LR-fuzzy numbers
can be defined, such as triangular fuzzy numbers, trapezoidal
fuzzynumbers, andgaussian fuzzynumbers. In particular, for
a trapezoidal fuzzy number the parametric representation is
denoted as ã = (m1,m2, l, r)LR . The LR-tuple conveys the
main information about the fuzzy set, namely its precision (by
means of its core or modal values m1 and m2) and fuzziness
(by means of l and r ). More details about the formal prop-
erties of L and R together with other features about the LR
representation can be found in Dubois et al. (1988). Figure
1a shows a graphical representation for a LR-fuzzy number
with a trapezoidal shape. Unlike the convex case, the α-sets
of a non-convex fuzzy set represent set-theoretical unions of
at least two compact disjoint intervals. In general, we may
observe different levels of non-convexity which can charac-
terize the structure of a fuzzy set (e.g., fuzzy sets with two
or more modes). However, in this contribution we will limit
our attention to a simple but important type of non-convex
fuzzy set called 2-mode fuzzy number (Fig. 1b). More for-
mally, let B̃ be a fuzzy set which obeys to (1) normality (at
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Fig. 1 a Convex trapezoidal LR fuzzy data and b non-convex 2-mode
fuzzy data (LHIR representation)

least one of the points of its support has full membership
value), (2) non-convexity, and (3) bimodality (it has no more
than two modes), then the fuzzy number b̃ is called a 2-mode
fuzzy number (Calcagnì et al. 2014). Note that, condition
(3) restricts the non-convexity property to its simplest repre-
sentation which corresponds to α-sets obtained by taking the
union of atmaximum two disjoint compact intervals. Like for
the standard convex representation, also for the LHIR rep-
resentation, non-convex fuzzy data can be described using
a parametric format. To this purpose, let us consider four
monotonic decreasing and left-continuous functions:

L : R
+ → [0, 1] H : R

+ → [0, 1]
I : R

+ → [0, 1] R : R
+ → [0, 1]

with the following properties:

L(υ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= 0 if υ = 1

= t1 if υ = 0

> 0 if υ < 1

< t1 if υ > 0

H(υ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= t1 if υ = 0

= z if υ = 1

> z if υ > 0

< t1 if υ < 1

with: υ ∈ R
+ t1 ∈ [0, 1] and z < t1

I (υ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= z if υ = 1

= t2 if υ = 0

> z if υ > 0

< t2 if υ < 1

R(υ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= 0 if υ = 1

= t2 if υ = 0

> 0 if υ < 1

< t2 if υ > 0

with: υ ∈ R
+ t2 ∈ [0, 1] and z < t2

Using L, H, I, and R, the membership function of b̃ can be
described in a very general way as follows:

μb̃(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L
(m1−x

l

)
if x < m1

H
( x−m1

h

)
if m1 < x < m0

I
(m2−x

i

)
if m0 < x < m2

R
( x−m2

r

)
if x > m2

where m1, m2, and m0 are the modal points and the middle
point, respectively; l and r are the external spreads; h and i are
the internal spreads with h = (m0−m1) and i = (m2−m0),

respectively. Therefore, the parametric representation for the
2-mode fuzzy data can be expressed as:

b̃ = {(m0,m1,m2, h, i, l, r); (μm1 , μm0 , μm2)}LH I R

where μm1 = t1, μm0 = z, and μm2 = t2 are the member-
ship values for m1, m0, and m2, respectively. In addition to
conditions (1–3), the following structural properties guaran-
tee the correct representation for a 2-mode fuzzy number:
(4) m1 < m0 < m2, (5) l > 0, (6) r > 0, (7) t1 < z < t2.
Note that, the definitions of L , H , I , and R allow to consider
different shapes for the 2-mode non-convex representation.
For the simplest case, if L , H , I , and R are chosen to be
linear functions:

L(υ) = max{0, (1 − υ)t1}
H(υ) = max{0, t1 − υ(t1 − z)}
I (υ) = max{0, t2 − υ(t2 − z)}
R(υ) = max{0, (1 − υ)t2}
we obtain the piecewise-linear 2-mode fuzzy number
(Fig. 1b). The definition of 2-mode fuzzy number is flex-
ible enough to capture also the convex cases. More pre-
cisely, when condition (7) is not met the 2-mode fuzzy num-
ber degenerates into a trapezoidal fuzzy number obeying to
m1 < m0 < m2, l > 0, r > 0, t1 = z = t2 = 1. By contrast,
when conditions (4) and (7) are not met the 2-mode fuzzy
number degenerates into a triangular fuzzy number obeying
to m1 = m0 = m2, l > 0, r > 0. Note that in this latter case
the internal shape functions H(υ) and I (υ) do not take part
in the model representation.

3 Non-convex fuzzy component analysis (NCFCA)

In this section we provide a detailed description of the
NCFCAmodel. Froma least squares viewpoint, themain idea
is to reduce the dimensionality of the underlying structure of
the non-convex fuzzy data by finding a set of components
which minimize a specific distance between the empirical
data and the fuzzy model data. For the sake of simplicity, in
this article we describe a technique which is restricted to deal
with piecewise-linear 2-mode representations and/or degen-
erated triangular and trapezoidal fuzzy data. Although some
empirical contexts may require different representations for
non-convex fuzzy data (e.g., quadratic 2-mode fuzzy num-
bers), in this contribution we introduce a dimension reduc-
tion technique for the most simple case first. However, the
two-mode representation is of relevant interest for modeling
data observed in many human decision-making applications
(e.g., Greene and Haidt 2002; Weber and Johnson 2009).
Moreover, the piecewise-linear two-mode representation still
guarantees that the extension of the fuzzy principal compo-
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nent analysis framework to the non-convex case still remains
at a manageable level of technical complexity.

3.1 Model and data analysis

LetX be a n (units)×m (variables) data matrix representing
the observed data. The generic element xi j of X defines an
array xi j = {m0, h, i, l, r, μ0, μ1, μ2}i j representing a para-
metrized fuzzy set.Byadopting theparametric representation
for 2-mode fuzzy data, the elements of X can be described
by a collection of n × m matrices, M0, H, I, L, R, MU0,
MU1,MU2, which contain the set of parameters involved in
the LHIR representation. Therefore, the component model
for 2-mode fuzzy data can be expressed as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0 = �M0�
T + EM0

H = �H�T + EH

I = � I�
T + EI

L = �L�T + EL

R = �R�T + ER

MU0 = �MU0�
T + EMU0

MU1 = �MU1�
T + EMU1

MU2 = �MU2�
T + EMU2

(1)

where �M0 , �H , � I , �L , �R , �MU0 , �MU1 , and �MU2

denote n × p matrices of score components, � is an m × p
matrix representing the component loadings whereas EM0 ,
EH , EI , EL , ER , EMU0 , EMU1 and EMU2 are n × m matri-
ces of residual terms. In general, the decomposition �X�T

yields the best p-rank approximation for the original matrix
X. The loading matrix � contains the coefficients which
relate the original variables to the new components. From
an algebraical point of view, �T represents the basis of the
subspaces Rp on which each fuzzy observation is projected.
Moreover,�M0 ,�H ,� I ,�L ,�R ,�MU0 ,�MU1 , and�MU2

are the matrices containing the coordinates of such projec-
tions. Note that in our model representation, the internal and
external spreads together with the matrices for the member-
ship values have all the same underlying component structure
� (Millsap and Meredith 1988). In general, � can be under-
stood as an intermediate representation among the midpoints
inM0, the membership values inMU0,MU1,MU2, and the
related left (H, L) and right (I,R) spreads, respectively. This
should offer a good compromise between model flexibility
and model simplicity for capturing the underlying structure
of the data.

3.2 Parameters estimation

In NCFCA, each empirical observation can be considered as
an object represented by an m-dimensional polytope in R

m .
By considering the main vertices and hedges of this object,

Fig. 2 Example of a fuzzy object in R
2

its corresponding support is an interval in R (for m = 1),
a rectangle in R

2 (for m = 2), and a hyper-rectangle in
R
m (for m ≥ 2). Figure 2 shows an example of a generic

fuzzy object in R
2. It is interesting to note that the support

of the fuzzy object is obtained by taking the union of two
sub-rectangles representing the projection of the internal and
external left and right spreads, respectively. Similarly, for
both the fuzzy sets in the graphical representation, the pro-
jection of the modal valuesm0 indicates the upper and lower
bounds of these sub-rectangles. Finally, the external rectan-
gle is obtained by joining the lower and upper bounds of the
left and right sub-rectangles, respectively. Using this formal
framework, the parameters estimation is obtained by mini-
mizing a suitable loss function between the observed data
and the model data. To this end, several measures for fuzzy
data can be adopted (Bloch 1999). In our proposal, we resort
to use a dissimilarity function based on the least squares cri-
terion (Jahanshahloo et al. 2006; Yang and Ko 1996):

D2 =
2m∑

k=1

∥
∥
∥(M0 − M∗

0)�
L
k

∥
∥
∥
2

+
2m∑

k=1

∥
∥
∥[(H − H∗)+(L− L∗)]�L

k +[(I+I∗) + (R − R∗)]�R
k

∥
∥
∥
2

+
2m∑

k=1

∥
∥
∥(MU1 − MU∗

1)�
L
k + (MU2 − MU∗

2)�
R
k

∥
∥
∥
2

+
2m∑

k=1

∥
∥
∥(MU0 − MU∗

0)�
L
k

∥
∥
∥
2
. (2)

where M∗
0 = �M0�

T , H∗ = �H�T , I∗ = � I�
T ,

L∗ = �L�T , R∗ = �R�T , MU∗
0 = �MU0�

T , MU∗
1 =

�MU1�
T , MU∗

2 = �MU2�
T . Note that in the above func-

tion, �L
k and �R

k are m × m diagonal matrices which allow
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to separately consider each distinct main vertex/hedge of the
m-dimensional polytope. More precisely, the diagonals are
equal to the rows of the Boolean structural matrices �L and
�R of order 2m ×m which are defined according to the fol-
lowing properties:

(a) �
L/R
t + �

L/R
2(m−1)+t

= 0m (t = 1, . . ., 2m−1)

(b) �L
k · �R

k = 0m×m

(c) �
L/R
k · �

R/L
k = �

L/R
k

(d) �L
k + �R

k = Im×m

(e)
∑2m

k=1 Tr(X�
L/R
k ) = 2m−1 Tr(X).

For instance, when m = 2 these matrices take the following
form:

�L =

⎛

⎜
⎜
⎝

1 1
1 0
0 0
0 1

⎞

⎟
⎟
⎠ �R =

⎛

⎜
⎜
⎝

0 0
0 1
1 1
1 0

⎞

⎟
⎟
⎠

Therefore, to represent the lower bounds of the support of
the m-dimensional object, we can set LB = M0 − H�L

1 −
L�L

1 + I�R
1 + R�R

1 which, in turn, is equivalent to write
LB = M0 − H�L

1 − L�L
1 after noticing that I�R

1 = 0
and R�R

1 = 0. The dissimilarity measure in (2) can also be
simplified by expanding the kth term of the norms by the
properties (b), (c) and (e):

D2 = 2m−1
∥
∥
∥(M0 − �M0�

T )

∥
∥
∥
2 + 2m−1

∥
∥
∥(H − �H�T )

∥
∥
∥
2

+ 2m−1
∥
∥
∥(I − � I�

T )

∥
∥
∥
2 + 2m−1

∥
∥
∥(L − �L�T )

∥
∥
∥
2

+ 2m−1
∥
∥
∥(R − �R�T )

∥
∥
∥
2

+ 2m−1
∥
∥
∥(MU0 − �MU0�

T )

∥
∥
∥
2

+ 2m−1
∥
∥
∥(MU1 − �MU1�

T )

∥
∥
∥
2

+ 2m−1
∥
∥
∥(MU2 − �MU2�

T )

∥
∥
∥
2

+ 2m Tr[(H − �H�T )T (L − �L�T )] +
+ 2m Tr[(I − � I�

T )T (R − �R�T )] (3)

where the structural matrices are simply replaced by appro-
priate weights. We use the Alternating Least Squares algori-
thm—ALS (Kiers and ten Berge 1989; Kiers 2002) to esti-
mate the parameters contained in �M0 , �H , � I , �L , �R ,
�MU0 , �MU1 , �MU2 , �. In particular, the final ALS solu-
tions for the model (1) are

vec(�̂) = [ (�T
H�H ⊗ Im×m + �T

L�L ⊗ Im×m

+�T
I � I ⊗ Im×m + �T

R�R ⊗ Im×m )

+(�T
M0

�M0 ⊗ Im×m + �T
MU0

�MU0 ⊗ Im×m

+�T
MU1

�MU1 ⊗ Im×m + �T
MU2

�MU2 ⊗ Im×m )

+2(�T
H�L ⊗ Im×m + �T

I �R ⊗ Im×m ) ]−1

× vec[ (HT �H + LT �L + IT � I + RT �R)

+(M0
T �M0 +MU0

T �MU0 +MU1
T �MU1

+MU2
T �MU2 ) + (HT �L+LT �H +IT �R + RT � I )]; (4)

vec(�̂L ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(H − �H�T + L); (5)

vec(�̂R) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(I − � I�
T + R); (6)

vec(�̂ I ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(R − �R�T + I); (7)

vec(�̂H ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(L − �L�T + H); (8)

vec(�̂M0 ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(M0); (9)

vec(�̂MU0 ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(MU0); (10)

vec(�̂MU1 ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(MU1); (11)

vec(�̂MU2 ) = (�T � ⊗ In×n)−1 · (� ⊗ In×n)T vec(MU2); (12)

where vec(.) is the linear operator that converts a n×mmatrix
into anmn×1 vector,⊗ denotes theKronecker product, and I
is an identitymatrix of appropriate order. In fitting the uncon-
strained NFCA model, we adopted an iterative procedure
based on standard stopping criteria and random initialization.
However, one potential limitation of such algorithm is that, in
some circumstances, it might not yield feasible solutions. In
particular, if the model is fitted to empirical data which are
largely corrupted by noise, the corresponding estimations
might violate the natural constraints of the 2-mode fuzzy
numbers (namely: h∗

j > 0n , i∗ j > 0n , l∗ j > 0n , r∗
j > 0n ,

μ∗
1 j < μ∗

0 j < μ∗
2 j ). In these situations, a constrained version

of the algorithm based on specific optimization techniques
should instead be preferred (Giordani and Kiers 2007). How-
ever, a common and easy strategy to deal with eventual infea-
sible parameter estimates is to apply a post-hoc correction on
the estimated parameters (Giordani and Kiers 2004). In par-
ticular, the estimates of eventual negative spreads could be set
to zerowhereas the estimatedmembership values of the fuzzy
data could be row-wise normalized to satisfy their natural
constraints.

3.3 Data interpretation and visualization

Once the estimated components are finally obtained, the
results can be analyzed by inspecting the loading matrix
̂� and/or by displaying the scores in a low-dimensional
plot. In particular, the loadings can be understood as lin-
ear coefficients which express the magnitude of the relation
between the observed variables and the estimated compo-
nents. By contrast, the scores represent the projections of the
fuzzy observation into the subspace spanned by ̂�. Like for
standard PCA (or CA), also for NCFCA, the score plot rep-
resents an important visualization procedure that allows to
assess the relationship among the projected units (e.g., by
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analyzing the patterns of similarity or dissimilarity among
the units). In what follows, we describe in more detail both
the data pre-treatment technique and the data evaluation pro-
cedure adopted in NCFCA modeling.

3.3.1 Data pre-treatment

A common practice in multivariate analysis is to pre-process
raw-data to obtain an improved and clean dataset. Two of the
most important ways to pre-process raw-data are centering
and scaling. Centering corresponds to a repositioning of the
coordinate system such that the center of gravity of the cloud
of data points becomes the origin. By contrast, scaling allows
to re-distribute the data according to a specific factor (e.g., the
standard deviation). In particular, scaling configures the orig-
inal variables within a unique scale range without changing
the original structure of the data. Centering and scaling can be
performed for several reasons. For instance, centeringmay be
applied to improve the fit of themodel, remove noise from the
data, avoid problems in the estimation procedures, etc. Sim-
ilarly, scaling may be implemented to adjust for scale differ-
ences, reduce the inflation of small or big values in the data,
improve the interpretation and visualization of the results,
etc. (Bro and Smilde 2003; van den Berg et al. 2006). Several
methods can be used for centering and scaling (e.g., auto-
scaling, range-scaling, pareto-scaling, vast-scaling). In this
contribution,we opted formean-centering and pareto-scaling
methods. In general, given a matrix A, the mean-centered
matrixA∗ is obtained asA∗ = A−1n×m ·diag(ā)whereas the
pareto-scaling is performed byA∗ = A · [diag(√std(A))]−1.
Note that, ā is the vector containing the column means of A,
std(.) indicates the column-wise standard deviation whereas
diag(.) is the operator which transforms a vector into a diago-
nal matrix. In particular, we pre-processed our data matrices
according to the following steps: (1)M0 was simultaneously
mean-centered and pareto-scaled by considering its means
and standard deviations, (2) H and I were pareto-scaled by
considering the standard deviations ofM0, (3) L andR were
pareto-scaled by considering the standard deviations of M1

andM2 respectively, (4)MU0,MU1, andMU2 were pareto-
scaled by considering the standard deviations of M0, M1,

and M2, respectively.

3.3.2 Rotation of �̂

Unlike standard PCA (or CA), the NCFCA estimation proce-
dure does not necessarily yield an orthonormal matrix̂�. For
this reason, a direct interpretation of ̂� might be arduous for
some datasets. However, by adopting an orthonormalization
procedure such as, for example, the modified Gram-Schmidt
algorithm, one can always define a rotationmatrix� such that
̂�� is column-wise orthonormal (Trefethen and Bau 1997).
In particular, themodifiedGram–Schmidt algorithm requires

to balance the estimated score matrices with the inverse of
the transpose of �. For instance, by considering the case
of M0 the balancing is performed as ̂�M0(�

T )−1. In addi-
tion, to facilitate the interpretation of the component struc-
ture, the analysis might also involve a rotation of ̂��. Sev-
eral techniques can be adopted to this purpose (Kiers 1997).
In NCFCA modeling we adopted the well-known Varimax
rotation which provides a very simple component structure
where each original fuzzy variable is associated with a small
set of components (Kaiser 1958). The rotation of̂� allows to
simplify the interpretation of both numerical and graphical
results of the model.

3.3.3 Model evaluation

In this subsection we illustrate some useful procedures to
assess the performance and reliability of the NCFCAmodel.

Goodness of fit. To evaluate the performance of the
NCFCA model, we considered the normalized index:

R = 1 − (A/B)

where:

A =
∥
∥
∥M0 − ̂�M0

̂�
T
∥
∥
∥
2 +

∥
∥
∥H − ̂�Ĥ�

T
∥
∥
∥
2 +

∥
∥
∥I − ̂� Î�

T
∥
∥
∥
2

+
∥
∥
∥L − ̂�L̂�

T
∥
∥
∥
2 +

∥
∥
∥R − ̂�R̂�

T
∥
∥
∥
2

+
∥
∥
∥MU0 − ̂�MU0

̂�
T
∥
∥
∥
2 +

∥
∥
∥MU1 − ̂�MU1

̂�
T
∥
∥
∥
2

+
∥
∥
∥MU2 − ̂�MU2

̂�
T
∥
∥
∥
2 + Tr[(H − ̂�Ĥ�

T
)T (L − ̂�L̂�

T
)]

+Tr[(I − ̂� Î�
T
)T (R − ̂�R̂�

T
)],

B = ‖M0‖2 + ‖H‖2 + ‖I‖2 + ‖L‖2 + ‖R‖2 + ‖MU0‖2
+ ‖MU1‖2 + ‖MU2‖2 + Tr[HTL] + Tr[ITR].

In the R index, A indicates the residual sum of squares and
B the observed sum of squares. This index takes values in
[0, 1] and is directly related to the number p of components
extracted by the NCFCA model. In particular, high values
for this index indicate that the NCFCAmodel almost exactly
reconstructs the original data matrices whereas low values
for R suggest that more components should be extracted to
obtain a satisfactory reconstruction of the original data (Gior-
dani 2010; Bro and Smilde 2003). Therefore, the proposed
index gives us additional information about the quality of
the NCFCA performance in reproducing the original infor-
mation stored in the data.

Reliability. To asses the accuracy of theNCFCAsolutions,
weused a non-parametric bootstrap procedure for component
analysis (Coppi et al. 2006; Kiers 2004). In particular, in the
non-parametric bootstrap Q samples (with Q ≥ 1000) of
size n were row-wise randomly drawn (with replacement)
from the original matrices M0, H, I, L, R, MU0, MU1,
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and MU2. For each qth sample, the loading matrix ̂�
q
was

derived by applying the NCFCA procedure on the sample
matrices M0

q , Hq , Iq , Lq , Rq , MU0
q , MU1

q , and MU2
q .

To make bootstrap solutions optimally comparable, ̂�
q
was

rotated to match as close as possible the original ̂�. Such
rotation was obtained by finding a rotation matrix �q that
minimizes the risk ‖̂�q

�q − ̂�‖2 with the following opti-

mal solution �q = (̂�
qT

̂�
q
)
−1

̂�
qT

̂�. These steps were
then repeated for Q times. Finally, the ensuing rotate sam-

ple matrices ̂�
1
,̂�

2
, . . . ,̂�

Q
were used for computing (by

resampling) the standard errors or percentile intervals for
each estimated parameter in the model. In general, the lower
the standard errors, the greater the accuracy of the model.

3.3.4 Score plot

The score plot is the graphical representation of the orig-
inal n units in the R

p subspace. Unlike standard PCA (or
CA), in the NCFCA framework each statistical unit is repre-
sented by a hyper-rectangle inRp. There are several methods
that can be considered for score plotting such as, for exam-
ple, maximum covering area rectangle—MCAR (Cazes et
al. 1997), parallel edge connected shapes—PECS (Irpino et
al. 2003) and Polytope Representation (Le-Rademacher and
Billard 2012). In this contribution we adopted the MCAR
approach which is a simple and fast graphical technique to
represent interval, symbolic, or fuzzy data. In particular, in
the simple two-dimensional case, MCAR allows to illustrate
the statistical units by means of rectangles inR2 whereas the
information associated to the membership functions is usu-
ally not represented.1 More formally, in our context MCAR
was applied as follows. Once the loadingmatrix was column-
wise orthonormalized and the score matrices balanced, each
non-convex fuzzy datum was described as the union of two
rectangles (or hyper-rectangles) referring to the left and right
internal and external spreads (see Fig. 2). The vertices repre-
senting the lower and upper bounds of the external rectangles
were obtained by the score matrices using the following for-
mula:

�i = �L
2p×p[diag(̂�M0i )−κ | diag(̂�Hi ) | − κ | diag(̂�Li )|]

+ �R
2p×p[ diag(̂�M0i )+κ | diag(̂� I i ) |

+ κ| diag(̂�Ri )|] (13)

whereas the inner left and right rectangles were depicted by
considering the midpoints in ̂�M0 as upper and lower ver-
tices, respectively. Note that �L

2p×p and �R
2p×p are Boolean

structural matrices of order 2p × p having the same struc-

1 Note, however, that the membership functions always contribute to
the orientation of the axes in R

p even if they are not directly illustrated
in the graphical representation.

Table 1 Example 1: loading matrix ̂� with standard errors in paren-
thesis (Q = 5,000)

Clinical items/variables Comp. 1 Comp. 2

(x1) I am good at controlling
negative and positive emotions

−0.38 (0.03) 0.00 (0.05)

(x2) I am worried that I will never
realize my ambitions

−0.50 (0.04) 0.10 (0.08)

(x3) It is important that human
relations are based upon trust

−0.01 (0.04) −0.98 (0.16)

(x4) It is important that I am
competent in everything I do

−0.34 (0.04) −0.10 (0.08)

(x5) I am worried to be bad −0.43 (0.04) −0.01 (0.05)

(x6) I am worried to lose my close
friends

−0.39 (0.05) 0.09 (0.10)

(x7) I like to be alone when I am
working with a problem

−0.39 (0.03) −0.10 (0.04)

Loadings higher than 0.35 (in absolute value) are in boldface type

tures and properties of those described in Sect. 3.2, whereas
|.| indicates the absolute value. Note that in (13) the scalar
κ ∈ ]0, 1] acts as a resizing factor which allows to reduce
the eventual oversize effect of the plotted rectangles.

4 Applications

In this section we describe three applications to illustrate the
main features of the NCFCA analysis. All the algorithms
developed for these applications are available upon request
to the authors.

4.1 Example 1: psychological assessment of worry

In this first example we analyzed a real dataset about the
psychology of worry (Stöber and Joormann 2001). In clin-
ical psychology, the assessment of worry is usually charac-
terized by high levels of imprecision and vagueness in the
data. The clinical inventory was composed by seven items
(see Table 1) and administered to a group of 10 undergradu-
ate students from the University of Trento (Italy). The scores
were collected using a computerized interface based on the
mouse tracking methodology (Calcagnì and Lombardi 2014;
Johnson et al. 2012). In particular, for each of the seven items,
participants were told that a pseudo-circular scale with five
response levels (strongly disagree, disagree, neither, agree,
strongly agree) would be presented on the screen, and that
they were asked to choose which of these responses was
the most appropriate for the presented item. After partici-
pants clicked a start button, a window with the text of the
item appeared at the top of the screen. Next the scale with
the five levels appeared while the cursor was allocated to
the center of the screen. Participants gave their responses
by mouse-clicking the chosen level of the scale. Meanwhile,
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Fig. 3 Mouse tracker: empirical patterns of mouse movements (a, b)
and their associated histograms and fuzzy sets (c, d). Note the two pat-
terns a and b are different but share a same finale response (1 strongly
disagree), the numbers encode the five levels of the scale (1 strongly

disagree, 2 disagree, 3 neither, 4 agree, 5 strongly agree), whereas the
histograms were rescaled to provide a better comparison with the fuzzy
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Fig. 4 Example 1: observed (x) and model reconstructed (x∗) fuzzy sets for subjects 2 and 9 on item x5

the system recorded the streaming x–y coordinates of the
computer mouse. Figure 3a, b shows two empirical patterns
of mouse movements. In particular, Fig. 3a represents an
empirical pattern with a low imprecision/fuzziness, by con-
trast Fig. 3b shows a pattern with a higher level of impre-
cision and vagueness. Figure 3c, d shows the histograms
and the associated fuzzy sets constructed using the radial
positions of the x–y mouse movement coordinates of the
empirical patterns. In particular, the fuzzy sets were obtained
by a heuristic optimization procedure that allowed to con-
vert histograms into fuzzy sets (Ciavolino et al. 2014). The
empirical datasets are reported in the supplementary mater-
ial of this article. Before running the NCFCA analysis, the
datasets were first pre-processed according to the procedure
described in Sect. 3.3.1, next theNCFCA algorithmwas used
to extract two main components (p = 2 with R = 0.90).
The algorithm converged after 30 iterations only. Moreover,
model accuracy and reliability were also good as indicated
by the low standard errors reported in Table 1. Finally, the
estimated loading matrix was orthonormalized and varimax-
rotated to simplify the interpretation of the components in
the NCFCA model. Figure 4 shows an example of some
observed (resp. reconstructed) fuzzy sets on the fifth vari-
able (x5).

To identify the meaning of each extracted component, we
selected the variables with loading values larger than ±0.35

(relevant variables). The results reported in Table 1 showed
that the first component depended on x2 (−0.50) and x5
(−0.43) and, to a less extent, on x1 (−0.38), x6 (−0.39)
and x7 (−0.39), whereas the second component exclusively
depended on x3 (−0.98). Therefore, taking into account the
meaning of the significant variables, the first component can
be understood as ‘individual dimension’ whereas the second
component can be referred as ‘interpersonal dimension’ of
psychology of worry.

Figure 5 shows the score plot for the NCFCA model in
the two-dimensional space spanned bŷ�. A substantive inter-
pretation of Fig. 5 can be provided by considering both the
positions and sizes of the rectangles. In particular, the size of
the rectangles reflected the imprecision associated with the
clinical items which played a significant role in the defini-
tion of the two components. In our case, the fuzzy units were
arranged into three main regions: central (units 1, 4, 5, 6, 7,
10), left-outer (units 2, 9), right-outer (units 3, 8). In partic-
ular, the individuals in the middle part of the plot showed
clinical scores that were in the mean range for both the com-
ponents. It is important to note that due to themean-centering
procedure, the origin of the axis represents the average region
and therefore the units located in this area are characterized
by mean profiles. On the contrary, the units located far away
from the center of gravity of the plot show typical features
which did not belong to the mean profile.
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Fig. 5 Example 1: score plot for the first and second components (fuzzy units are consecutively numbered and represented with different colors)
(color figure online)

Table 2 Example 2: loading matrix ̂� with standard errors in parenthesis (Q = 5,000)

Variables Comp. 1 Comp. 2 Comp. 3

(x1) Degree of development of Italian
university system

−0.46 (0.07) 0.03 (0.06) −0.25 (0.08)

(x2) Level of uselfuness of university
programs

0.23 (0.06) −0.17 (0.07) −0.80 (0.10)

(x3) Level of trust in local government −0.26 (0.06) 0.17 (0.07) −0.53 (0.08)

(x4) Level of trust in private enterprise −0.46 (0.07) −0.20 (0.06) 0.03 (0.08)

(x5) Degree of devel. of Italy −0.67 (0.06) 0.04 (0.06) 0.09 (0.07)

(x6) Degree of importance of psychologists −0.08 (0.06) −0.53 (0.05) −0.05 (0.06)

(x7) Level of uselfuness of psychologists 0.02 (0.07) −0.79 (0.06) 0.08 (0.09)

Loadings higher than 0.35 (in absolute value) are in boldface type

4.2 Example 2: self perception of professional roles

In this second application we studied a real dataset about
psychologists’ self perception of their professional role. To
this end, a personality 7-item questionnaire (see Table 2)
was administered to a group of 24 psychology students
from the University of Trento (Italy). Data were collected
by means of a computerized questionnaire based on fuzzy
rating scales commonly used in human rating studies (Hes-
keth et al. 1988). In particular, the fuzzy scale was based
on a pseudo-continuous scale implemented using a suitable
graphical interface (see Fig. 6). Interestingly, the fuzzy rat-
ing scale may elicit two different scenarios: the respondent
chooses a single level of the scale (Fig. 6b) or s/he selects

an intermediate position which lies between the two levels
(Fig. 6c).

The empirical datasets are reported in the supplementary
material of this article. The NCFCA model was applied to
the pre-processed data and three components (p = 3) were
extracted using the NCFCA algorithm (R = 0.88). The algo-
rithm converged after 112 iterations. Model accuracy and
reliabilitywere also good as shown by the low standard errors
reported in Table 2. Like for the previous analysis, also in this
second application the estimated loading matrix was ortho-
normalized and varimax-rotated in the NCFCA model.

The results reported in Table 2 showed that the first com-
ponentwas inversely related to x1 (−0.46), x4 (−0.46) and x5
(−0.67). Similarly, the second component was also inversely
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Fig. 7 Example 2: observed (x) and model reconstructed (x∗) fuzzy sets for subjects 12 and 20 on item x2

related to x6 (−0.53) and x7 (−0.79). Finally, the third com-
ponent inversely depended on x2 (−0.80) and x3 (−0.53).
In line with these results, the first component can be inter-
preted as ‘future perspective dimension’, the second compo-
nent refers to ‘psychology as profession’, whereas the third
component can be understood as ‘present dimension’. Figure
7 shows an example of some observed (resp. reconstructed)
fuzzy sets on the second variable (x2). Figures 8 and 9 show
the score plots for the first vs. second and second vs. third
components, respectively. In particular, the first score plot
(Fig. 8) contrasts future and profession. It shows an interest-
ing pattern in which most of the units were located on the
middle part of the plot whereas only small groups of units
were located in the left-outer (units 3, 14) and right-outer
(units 5, 7, 13, 16) parts of the graphical representation. The
second score plot (Fig. 9) contrasts present and profession.
Like for the previous graphical representation, also for the

second score plot most of the units are located in the middle
portion of the plot. Finally, the sizes of the rectangles were
generally small and similar among dimensions (in general,
the students seemed to convey the same degree of impreci-
sion in providing their responses).

4.3 Example 3: welfare and productivity of Italian regions

In this last example we tested our model on a real dataset
about economic and social indicators collected by the
National Institute of Statistics (ISTAT). The original dataset
contained 10 socio-economic indicators referred to 20 Ital-
ian regions (see Table 3). To test our model the crisp vari-
ables were first rescaled to a common scale and next fuzzified
with a suitable fuzzification procedure based on the Mam-
dani fuzzy system (Lalla et al. 2005). The fuzzification rou-
tine yielded the following sets for the fuzzy variables: null
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Fig. 9 Example 2: score plot for the second and third components (fuzzy units are consecutively numbered and represented with different colors)
(color figure online)

(0, 0, 1.67), very-low (0, 2.13, 3.33), low (1.67, 3.87, 5.0),
middle (3.33, 4.69, 6.67), high (5.0, 7.47, 8.33), very-high
(6.67, 8.95, 10.0), extreme (8.33, 10.0, 11.67). The empir-
ical datasets are reported in the supplementary material of
this article. The NCFCA algorithm was applied to the pre-
processed data and two components (p = 2) were extracted
(R = 0.90). The algorithm converged after 20 iterations.
Model accuracy and reliability were also good as shown

by the low standard errors reported in Table 3. Finally. the
estimated loading matrix was orthonormalized and varimax-
rotated.

By inspecting Table 3, one can observe that the first com-
ponent was negatively related to x1 (−0.41), x2 (−0.43), x3
(−0.42), x4 (−0.40), x10 (−0.41), and to a less extent to
x9 (−0.37). By contrast, the second component was pos-
itively related to x5 (0.49), x6 (0.54), x7 (0.53), and x8
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Table 3 Example 3: loading matrix ̂� with standard errors in paren-
thesis (Q = 5,000)

Indicators/variables Comp. 1 Comp. 2

(x1) Household spending −0.41 (0.01) 0.04 (0.02)

(x2) Investments −0.43 (0.02) 0.03 (0.01)

(x3) Income −0.42 (0.02) 0.01 (0.01)

(x4) Salaries −0.40 (0.01) 0.05 (0.02)

(x5) Marriage index −0.04 (0.02) 0.49 (0.02)

(x6) Public education expenditures 0.04 (0.01) 0.54 (0.01)

(x7) Unemployment index 0.04 (0.01) 0.53 (0.01)

(x8) Energy consumption −0.05 (0.02) 0.42 (0.03)

(x9) Public culture expenditures −0.37 (0.02) −0.06 (0.04)

(x10) Efficiency of health index −0.41 (0.02) −0.06 (0.02)

Loadings higher than 0.35 (in absolute value) are in boldface type

(0.42). The first component can be interpreted as ‘over-
all productivity’ and the second one can be referred to
‘territorial welfare’. Figure 10 shows an example of some
observed (resp. reconstructed) fuzzy sets on the seventh vari-
able (x7). Figure 11 shows the score plot for the extracted
components. A clear pattern can be read from the score
plot. In particular, the southern regions (Campania, Calabria,
Sicily, Sardinia, Apulia, Molise) were located in the sec-
ond quadrant, whereas many of the richest northern regions
(Lombardy, Veneto, Emilia Romagna, Tuscany) were in the
fourth quadrant. Finally, the middle part of the plot con-
tained central regions as well as some small northern ones
(e.g., Friuli, Aosta Valley, Trentino). The regions in the
fourth quadrant showed socio-economical profiles charac-
terized by high productivity as well as a solid territorial
welfare, whereas the regions in the second quadrant of the
map showed the opposite pattern. In particular, the regions
Campania, Sicily, Calabria, and Basilicata showed low val-
ues for productivity and territorial welfare. By considering
the sizes of the projected rectangles, most of the regions
were characterized by similar degree of fuzziness whereas

Lombardy seemed to be the region with the higher fuzzi-
ness.

5 Conclusion and further perspectives

In this paper, we extended the component analysis approach
to non-convex fuzzy data. The proposed NCFCA method
allowed to reduce the dimensionality of multivariate datasets
with non-convex fuzzy observations. In particular, the pro-
posed method considered non-convexity by directly incor-
porating the membership values of fuzzy observations in
the NCFCA model. To better illustrate the NCFCA features,
we also described three real applications with non-convex
fuzzy data. The empirical results suggested the important role
played by this property when researchers have to deal with
complex, imprecise, and vague information. Furthermore, it
is straightforward to note how NCFCA can also be applied
when data are represented by standard convex fuzzy features,
in particular by setting MU0 = MU1 = MU2 = 1n×m

for trapezoidal cases and H = I = 0n×m together with
MU0 = MU1 = MU2 = 1n×m for triangular cases.

However, the proposedmethod can potentially suffer from
some limitations. For instance, in some empirical cases
the piecewise-linear representation for 2-mode fuzzy data
cannot be valid and therefore other representations should
be preferred (e.g., quadratic or cubic 2-mode fuzzy num-
bers). Finally, for some datasets the unconstrained algo-
rithm could estimate parameter values which violate the
normative properties or the MCAR representation may not
adequately represent the whole information provided by 2-
mode fuzzy data. In particular, although the 2-mode rep-
resentation can be still reasonable for modeling data from
human decision-making contexts, other empirical situations
may require more complex and flexible representations (e.g.,
k-mode fuzzy numbers, k ≥ 2). Various possible exten-
sions of our proposal could be considered. For example,
the adoption of a constrained approach for the estimation
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Fig. 10 Example 3: observed (x) and model reconstructed (x∗) fuzzy sets for subjects eight and 19 on variable x7
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procedure would always guarantee the consistency between
the estimated parameters and the corresponding normative
representations for non-convex fuzzy numbers. Moreover, a
future venue of research would also consist in the improve-
ment of the graphical representation and/or the extension
of the NCFCA method to cases where data are described
by means of k-mode fuzzy data beyond the ones character-
ized by piecewise-linear membership functions. However,
this extension would necessarily require a deeper investiga-
tion of the foundational/mathematical aspects concerning the
non-convexity property in fuzzy numbers. Finally, an organic
framework able to dealwith randomness and fuzziness simul-
taneously might be adopted in future developments (e.g.,
using Fuzzy Random Variables). This would extend our pro-
posal beyond the semi-descriptive approach presented in this
contribution.
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