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Abstract In this paper we present a crisp-input/fuzzy-output regression model based on
the rationale of generalized maximum entropy (GME) method. The approach can be used
in several situations in which one have to handle with particular problems, such as small
samples, ill-posed design matrix (e.g., due to the multicollinearity), estimation problems
with inequality constraints, etc. After having described the GME-fuzzy regression model,
we consider an economic case study in which the features provided from GME approach are
evaluated. Moreover, we also perform a sensitivity analysis on the main results of the case
study in order to better evaluate some features of the model. Finally, some critical points are
discussed together with suggestions for further works.

Keywords Generalized maximum entropy method · Fuzzy regression model · Economic
case study · Fuzzy statistics · Sensitivity analysis

1 Introduction

Uncertainty is an important attribute of reality. Traditionally, uncertainty has been modelled
via the probability theory (Ross 2009; Verkuilen and Smithson 2006) although many empir-
ical phenomena (such as decisions, rating, judgements or opinions) convey a special kind of
information which cannot be described using the probability approach. Such real situations
seems to convey another form of uncertainty called fuzziness. Broadly speaking, we can dis-
tinguish three kinds of empirical situations in which we deal with events whose properties
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to be measured can be (i) vague, (ii) fuzzy and (iii) crisp. From a measurement point of
view, vague events cannot be quantified because of the lack of metrical information (they
can properly be represented with qualitative models only) whereas, due to the presence of
testable information (Jaynes 1968), crisp events can be well-quantified with metrical struc-
tures. Fuzzy events, instead, can suitably be represented with special formal structures based
on the soft computing principles. In several cases researchers have to deal with this kind
of empirical data, such us, for example, the case of decision making under uncertainty for
economic and social sciences, economic investment decisions, government decisions, risk
decisions, etc. In order to handle with this data, fuzzy set theory (FST) can be seen as good
soft computing approach whose models and methods are able to extract useful information
from the real data. To do this, several fuzzy statistical methods are available (Buckley 2004;
Coppi et al. 2006; Taheri 2003; Nguyen and Wu 2006). In particular, fuzzy regression models
have widely been studied using several perspectives (Kacprzyk and Fedrizzi 1992), such us,
for example, the least squares approach (Celmiņš 1987; Diamond 1988; D’Urso and Gastaldi
2000; D’Urso 2003; Coppi 2008) and the possibilistic approach (Tanaka 1987).

In this article we describe a crisp-input/fuzzy-output regression model entirely based
on the rationale of generalized maximum entropy (GME) method (Golan and Judge 1996;
Ciavolino and Dahlgaard 2009) and the application of the method to an economic case study.
To this end, the remainder of this paper is structured as follows. The second section is devoted
to briefly describes the GME approach. The third section explains the main features of the
proposed GME fuzzy regression model whereas the fourth section shows the economic case
study as evidence for our statistical method. Finally, the fifth section concludes this article
by providing final comments and suggestions about future works.

2 Generalized maximum entropy approach (GME): rationale and method

GME methods of estimation have been proposed for the first time by Golan and Judge (1996)
as an extension of the well-known maximum entropy approach proposed by Jaynes (1957,
1982) and based on the principles of Shannon’s theory of information (Shannon et al. 1949)
[for a general introduction see Kapur (1989)]. These methods are based on a semi-parametric
perspective whose features can usefully be employed in several statistical problems as we
will show in the following sections. Firstly, in what follows, we describe its rationale.

2.1 Maximum entropy approach (ME)

It is well known as Entropy can be understand as a measure of information carried out from
a probability distribution. Letting X be a random variable whose outcomes are x j ∀ j =
1, . . . , m, with mass probability p j and

∑m
j p j = 1, the Shannon’s entropy is defined as

follows:

H(p) = −
m∑

j

p j · ln(p j )

which is a convex function whose minimum is zero when P is a degenerated probability
distribution (perfect certainty) while it assumes its maximum when P is a uniform distribution
(perfect ignorance). Maximum entropy method of estimation has been proposed by Jaynes as a
method to recover an unknown probability distribution from an empirical dataset by knowing
a set of empirical knowledge (Jaynes 1957; Guiasu and Shenitzer 1985). Let us consider an
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empirical distribution x whose associated probability distribution P is unknown and y =∑m
j x j p j be the empirical knowledge available (which will be called consistency constraint).

The probability distribution P can be recovered by the formulation of a constrained-NLP
problem as follows:

Maximize: −
m∑

j

p j · ln(p j ) subject to: y =
m∑

j

x j p j and
m∑

j

p j = 1

whose solutions can be founded, for example, using the Lagrangian multipliers method:

L = −
m∑

j

p j · ln(p j ) + λ(y −
m∑

j

x j p j ) + τ (1 −
m∑

j

p j )

where the first order conditions of the problem are:

∂L
∂p j

= −ln(p j ) − λ − τ xi j = 0; ∂L
∂λ

= y −
m∑

j

x j p j = 0; ∂L
∂τ

= 1 −
m∑

j

p j = 0

whereas the final solution is:

p̂ j = e−λx j

∑k
j e−λx j

The solution just described can be applied to solve ill-posed problems, such as the classical
example of the Jaynes’s dice experiment.

Usually, in this empirical problems, the empirical knowledge available is not pure but
noisy. Hence, in order to provide a good representative model, the consistency constraint has
to be re-written adding a stochastic error term ϵi as follows:

yi =
m∑

j

x j p j + ϵi

This approach, called GME, can be directly explained through the example of regression
model (Golan and Judge 1996), as we will show in the next subsection.

2.2 Generalized maximum entropy approach (GME) for the case of regression model

Let us consider the following regression model for the i th unit:

yi = α +
m∑

j

xi jβ j + ϵi

by using GME approach we can re-parametrized β j (or α) and ϵi as a convex combination
of expected value of a discrete random variable, particularly:

β j =
K∑

k

zβ
jk pβ

jk

where zβ
jk is the generic element of the support zβ

j , a symmetric vector around zero whose

dimension is K × 1 (with 2 ≤ K ≤ 7), while pβ
jk is the generic element of the probability

vector pβ
j associated to zβ

j . The error term ϵi can also be written as:
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ϵi =
H∑

h

zϵ
ih pϵ

ih

where zϵ
is is the generic element of the support zϵ

i , a symmetric vector around zero, while
pϵ

ih is the generic element of the probability vector pϵ
i associated to zϵ

i (with 2 ≤ H ≤ 7).
Finally, the GME regression model for the i th unit can be written as follows:

yi =
(

K∑

k

zα
k pα

k

)

+
m∑

j

xi j

(
K∑

k

zβ
jk pβ

jk

)

+
(

H∑

h

zϵ
ih pϵ

ih

)

Clearly, zα and pα are the GME-vectors associated to the intercept of the model, zβ
j and pβ

j
are the vectors for the j th variable while zϵ

i and pϵ
i are defined for the i th component of

error terms. In this framework, zβ
j and zϵ

i have an important role in the probability estimation
procedure together with the choice of their supports. These vectors represent the empirical
knowledge available to the researchers. Therefore, their values can or directly reflect this
information nor they must be chosen ad-hoc, for instance, by using the three-sigma-rule
(Pukelsheim 1994) or a sensitivity analysis.

2.3 Goodness of fit index

The GME approach to regression analysis allow us to use the probability distributions of the
regression parameters in order to define a suitable global fit index for the model, as follows:

R2
pseudo = 1 −

(
−∑m

j
∑K

k pβ
jk ln(pβ

jk) − ∑K
k pα

k ln(pα
k )

(m + 1) · ln(K )

)

that can be referred to Soofi’s pseudo-R2 (Soofi 1992). When R2
pseudo = 0 the model does

not have a good fit while R2
pseudo = 1 indicates an excellent fit of the model. Note that the

quantity in the bracket is called Entropy ratio and measures the reduction of the model’s
uncertainty related to the parameters estimated. In addition, one can define the following
log-likelihood ratio statistic:

W = 2 (m + 1) ln(K ) · R2
pseudo

that converges in distribution to a χ2 with degrees of freedom equal to the number of con-
straints imposed for the null hypothesis that all parameters of the model are zero (Ciavolino
and Dahlgaard 2009; Golan et al. 2000).

2.4 Some remarks

GME approach shows some advantages (Ciavolino and Al-Nasser 2009). In particular, it:

(a) does not require distributional error assumptions;
(b) is robust for a general class of error distributions;
(c) has an excellent work with small samples, when the number of observations is less than

the number of variables, when the design matrix is affected by multicollinearity;
(d) allows to use inequality constraints in the estimation process;
(e) allows to employ the set of empirical knowledge about the phenomenon studied and to

evaluate its impact on the parameters estimation procedure.
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Furthermore, GME can easily be extended toward a more complex approach, called gener-
alized cross-entropy (GCE) method, in which the estimation procedure is constrained under
specific a-priori information represented by some distributional models like in the Bayesian
context (Golan 2008; Kapur 1989).

3 Crisp-input/fuzzy-output regression model

The relation between crisp independent variables (input) and fuzzy dependent variables
(output) plays a special role in the context of socio-economic data. For instance, in socio-
economic studies, the relation between crisp (e.g., family income) and fuzzy quantities (e.g.,
quality of service, quality of teaching, etc) are often analyzed by the researchers (Chang and
Yeh 2002; Chan et al. 1999; Benítez et al. 2007). Nevertheless, although some empirical
contexts may require more complex representations (e.g., fuzzy-input/fuzzy-output models),
in this article we wanted to develop a GME fuzzy regression model for the most simple case
first. To this end, in this section we propose a crisp-input/fuzzy-output regression model based
on the generative approach described for the first time by D’Urso and Gastaldi (2000) and
D’Urso (2003). Unlike more complex approach such as the non-generative ones, this approach
seems to provide a good compromise between model flexibility and model simplicity.

3.1 Fuzzy data

Traditionally, fuzzy data are represented by the LR-fuzzy numbers defined for the first time
in Dubois et al. (1988). Generally, a LR-fuzzy number is a convex and normal fuzzy set with
a unique core and by considering the analytic expression of its membership function, we can
have triangular, trapezoidal, Gaussian, fuzzy numbers (Hanss 2005). In the following, we
will only refer to triangular fuzzy numbers. By using two decreasing smooth functions (said
shape functions):

L : R+ → [0, 1] and R : R+ → [0, 1]

whose properties are:

L(υ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

= 0 if υ = 1
= 1 if υ = 0
> 0 if υ < 1
< 1 if υ > 0

R(υ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

= 0 if υ = 1
= 1 if υ = 0
> 0 if υ < 1
< 1 if υ > 0

∀υ ∈ R+

a triangular fuzzy number can be defined through the following membership function:

µã(x) =
{

L
( c−x

l

)
if x ≤ m

R
( x−c

r

)
if x ≥ m

where c is the core, l and r are the left and right spreads respectively. Finally, a LR-fuzzy
number ã with triangular membership function can be represented by the following triple:

ã = (c, l, r)L R

conveying the main information about fuzzy data. In Fig. 1 we can see a graphical represen-
tation of LR-fuzzy number.
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Fig. 1 A triangular fuzzy set
(convex set)

3.2 Fuzzy regression model

Let Xn,m be a n (cases) x m (variables) matrix representing the set of independent variables
and let

Ỹ = (c, l, r)

be a fuzzy matrix representing the dependent variable whose components are n × 1 data
vectors. The model representation for Ỹ is the following:

Ỹ ∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ci = αc + ∑m
j=1 xi jβ

c
j + ϵc

i ≡ ci = c∗
i + ϵc

i

li = αl + c∗
i βl + ϵl

i ≡ li = l∗i + ϵl
i

ri = αr + c∗
i βr + ϵr

i ≡ ri = r∗
i + ϵr

i ∀i = 1...n

(1)

where c∗
i , l∗i and r∗

i are the estimated deterministic components of dependent fuzzy variable,
βc, βl , βr , αc, αl and αr are the regression coefficients for the centers, left and right spreads
respectively, whereas ϵc

i , ϵl
i and ϵr

i are the error terms of the model. The model adopts a
generative approach in which c∗

i generates l∗i and r∗
i . Therefore, the model is able to take

into account possible relations between the centers and the spreads. This model representation
is in line with a semi-confirmatory approach which assumes that our data are consistent with a
generative hypothesis representing possible relations among the centers/modes of the spreads.
More precisely, the model captures the dynamic of the spreads as a function of the magnitude
of the (estimated) centers/modes. In other words, in some contexts it can be natural to think
that the spread (fuzziness) in the measure of an empirical phenomenon is to some extent
proportional to its intensity (D’Urso and Gastaldi 2000).

3.3 GME fuzzy regression model

The proposed GME Crisp-Input/Fuzzy-output regression model takes the main advantages
of the GME estimation method by handling with ill-posed problems, multicollinearity in the
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predictors’ matrix, small and fat datasets, definition of inequality constraints (such as the
definition of positive spreads) or the use of prior information about the phenomenon.

Therefore, in line with the features described in the Sect. 2, the equations for the GME
fuzzy regression model are the following:

ci =

c∗
i︷ ︸︸ ︷

K∑

k

zαc

k pαc

k

︸ ︷︷ ︸
αc

+
m∑

j

xi j

K∑

k

zβc

jk pβc

jk

︸ ︷︷ ︸
βc

j

+
H∑

h

zϵc

ih pϵc

ih

︸ ︷︷ ︸
ϵc

i

li =
K∑

k

zαl

k pαl

k

︸ ︷︷ ︸
αl

+ c∗
i ·

K∑

k

zβl

jk pβl

jk

︸ ︷︷ ︸
βl

+
H∑

h

zϵl

ih pϵl

ih

︸ ︷︷ ︸
ϵl

i

ri =
K∑

k

zαr

k pαr

k

︸ ︷︷ ︸
αr

+ c∗
i ·

K∑

k

zβr

jk pβr

jk

︸ ︷︷ ︸
βr

+
H∑

h

zϵr

ih pϵr

ih

︸ ︷︷ ︸
ϵr

i

(2)

The parameters of the model are obtained by recovering the unknown probability dis-
tributions pβc

, pβ l
, pβ r

, pαc
, pαl

, pαr
, pϵc

, pϵ l
and pϵr

through the following optimization
problem.

The GME objective function is:

H(pαc
, pαl

, pαr
, pβc

, pβl
, pβr

, pϵc
, pϵl

, pϵr
)

= −
K∑

k

pαc

k · ln(pαc

k ) −
K∑

k

pαl

k · ln(pαl

k ) −
K∑

k

pαr

k · ln(pαr

k )

−
m∑

j

K∑

k

pβc

jk · ln(pβc

jk ) −
m∑

j

K∑

k

pβl

jk · ln(pβl

jk) −
m∑

j

K∑

k

pβr

jk · ln(pβr

jk )

−
n∑

i

H∑

h

pϵc

ih · ln(pϵc

ih ) −
n∑

i

H∑

h

pϵl

ih · ln(pϵl

ih) −
n∑

i

H∑

h

pϵr

ih · ln(pϵr

ih )

(3)

The consistency constraints are represented by the three equations described in equa-
tion 2 for the centers and left/right spreads whereas the normalization constraints on the
probabilities are:

K∑

k

pαc

k = 1
K∑

k

pαl

k = 1
K∑

k

pαr

k = 1

K∑

k

pβc

jk = 1
K∑

k

pβl

jk = 1
K∑

k

pβr

jk = 1 ∀ j = 1, . . . , m

H∑

h

pϵc

ih = 1
H∑

h

pϵl

ih = 1
H∑

h

pϵr

ih = 1 ∀i = 1, . . . , n

(4)
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A possible way to solve this problem is based on Lagrangian multipliers method whose
Lagrangian function L is composed by the entropy function 3 together with the constraints
2 and 4. In particular:

L = H(pαc
, pαl

, pαr
, pβc

, pβl
, pβr

, pϵc
, pϵl

, pϵr
)

+
n∑

i

λc
i

⎛

⎝ci −
K∑

k=1

zαc

k pαc

k −
m∑

j

xi j

K∑

k

zβc

jk pβc

jk −
H∑

h

zϵc

ih pϵc

ih

⎞

⎠

+
n∑

i

λl
i

(

li −
K∑

k=1

zαl

k pαl

k − c∗
i

K∑

k

zβl

jk pβl

jk −
H∑

h

zϵl

ih pϵl

ih

)

+
n∑

i

λr
i

(

ri −
K∑

k=1

zαr

k pαr

k − c∗
i

K∑

k

zβr

jk pβr

jk −
H∑

h

zϵr

ih pϵr

ih

)

+ µαc

(
K∑

k=1

pαc

k − 1

)

+ µαl

(
K∑

k=1

pαl

k − 1

)

+ µαr

(
K∑

k=1

pαr

k − 1

)

+
m∑

j

µ
βc

j

(
K∑

k=1

pβc

jk − 1

)

+
m∑

j

µ
βl

j

(
K∑

k=1

pβl

jk − 1

)

+
m∑

j

µ
βr

j

(
K∑

k=1

pβr

jk − 1

)

+
n∑

i

µϵc

i

(
H∑

h=1

pϵc

ih − 1

)

+
n∑

i

µϵl

i

(
H∑

h=1

pϵl

ih − 1

)

+
n∑

i

µϵr

i

(
H∑

h=1

pϵr

ih − 1

)

(5)

By equating to zero the first partial derivatives of the above functional (first order condi-
tions), we obtain the following parametrized solutions:

p̂k
αc = ezαc

k ·(∑i λc
i +

∑
i λl

i
∑

j pβl

jk +∑
i λr

i
∑

j pβr

jk )

∑
k ezαc

k ·(∑i λc
i +

∑
i λl

i
∑

j pβl
jk +∑

i λr
i
∑

j pβr
jk ) ≡ )αc

p̂k
αl = e

∑
i λl

i zαc
k

∑
k e

∑
i λl

i zαc
k ≡ )αl

p̂k
αr = e

∑
i λr

i zαr
k

∑
k e

∑
i λr

i zαr
k ≡ )αr

(6)

p̂βc

jk = e
∑c

i xi j zβc

jk ·(λc
i +λl

i zβl

jk pβl

jk +λr
i zβr

jk pβr

jk )

∑
k e

∑c
i xi j zβc

jk ·(λc
i +λl

i zβl
jk pβl

jk +λr
i zβr

jk pβr
jk ) ≡ )βc

p̂βl

jk = e
∑

i λl
i zβl

jk ·(zαc
k pαc

k +xi j zβc

jk pβc

jk )

∑
k e

∑
i λl

i zβl
jk ·(zαc

k pαc
k +xi j zβc

jk pβc
jk ) ≡ )βl

p̂βr

jk = e
∑

i λr
i zβr

jk ·(zαr
k pαr

k +xi j zβr

jk pβr

jk )

∑
k e

∑
i λr

i zβr
jk ·(zαr

k pαr
k +xi j zβr

jk pβr
jk ) ≡ )βr

∀ j = 1, . . . , m

(7)
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p̂ϵc

ih = eλc
i zϵc

ih

∑
h eλc

i zϵc
ih ≡ )ϵc

p̂ϵl

ih = eλl
i zϵl

ih

∑
h eλl

i zϵl
ih ≡ )ϵl

p̂ϵr

ih = eλr
i zϵr

ih

∑
h eλr

i zϵr
ih ≡ )ϵr

∀i = 1, . . . , n

(8)

Note that each denominator )(.) of the above formulas represent the normalization factor
for the probability distributions.

4 An economic case study: employment and unemployment in OECD countries

We studied a known econometric model related to the study of unemployment and employ-
ment (Overman and Puga 2002; Patacchini and Zenou 2007; Bernardini Papalia and Ciavolino
2011). Data was drawn from OECD dataset (OECD 2011, 2013) and referred to European
OECD countries for the period 2010–2011. The unemployment rate for 2010 and the employ-
ment rate for 2011 were used as independent variables whereas the unemployment rate for
2011 was employed as dependent variable. The crisp dependent variable was fuzzified into
a triangular fuzzy variables with three levels of definition (low, medium and high unemploy-
ment). To do this, we used an application developed in Python which allows to represent crisp
variables into fuzzy variables by preserving the original information stored in the data. Such
procedure is based on a Mamdani fuzzy system allowing to synthesize the information stored
into the histogram of the dependent variable by means of a suitable fuzzy set which is able to
reproduce the main characteristics of the histogram representation. This procedure has been
widely adopted in the FST literature (Medasani et al. 1998; Nieradka and Butkiewicz 2007;
Cheng and Chen 1997) and more details are available in Ciavolino et al. (2013). Thus, the
final optimized triangular fuzzy sets for unemployment 2011 were the following: low (1, 3,
4), middle (5, 8, 9), high (10, 12, 15). Final dataset is represented in Table 1.

Note that, x1 refers to Unemployment rate for 2010, x2 refers to Employment rate for 2011
whereas c, l and r are the centers and spreads for the fuzzy dependent variable Unemployment
rate for 2011. The support of the regression coefficients have been chosen through a sensitivity
analysis whereas the supports for the error terms have been computed by the 3-σ -rule where
σ is the empirical standard deviation of the independent variables.

4.1 Sensitivity analysis for β coefficients

In order to evaluate the parameters space for the regression coefficients and to measure their
sensibility, we performed a sensitivity analysis for each fuzzy regression coefficients, as also
suggested by Golan et al. (1996) and Ciavolino and Dahlgaard (2009). The set of parameters
to be evaluated was choose to vary between [−10 −5 0 5 10] and [−200 −100 0 100 200] (20
steps of analysis). Table 2 describes the results of the sensitivity analysis for only significant
values of the original space analysis. For each support we reported the values for regression
parameters and R2

pseudo. Figure 2 shows the graphical pattern for each parameters analyzed.
According to the features of sensitivity analysis we chose the support whose parameters with
a stable R2

pseudo. As we can notice by the Fig. 2, the stability of the R2’s pattern was reached
after few steps. With a conservative attitude we chose the support [−120 −60 0 60 120].
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Table 1 Dataset for the study of
unemployment rate for the year
2011

x1 x2 c l r

Austria 2.00 13.00 2.00 1.00 2.00

Belgium 5.00 6.00 2.00 1.00 2.00

Czech Republic 4.00 8.00 2.00 1.00 2.00

Denmark 4.00 13.00 2.00 1.00 2.00

Estonia 12.00 8.00 6.00 1.00 3.00

Finland 5.00 11.00 2.00 1.00 2.00

France 6.00 7.00 6.00 1.00 3.00

Germany 4.00 13.00 2.00 1.00 2.00

Greece 9.00 1.00 11.00 1.00 4.00

Hungary 7.00 1.00 6.00 1.00 3.00

Ireland 10.00 4.00 6.00 2.00 3.00

Italy 5.00 2.00 2.00 1.00 2.00

Luxembourg 2.00 7.00 2.00 1.00 2.00

Netherlands 2.00 15.00 2.00 1.00 2.00

Norway 1.00 15.00 2.00 1.00 2.00

Poland 6.00 4.00 6.00 1.00 3.00

Portugal 7.00 7.00 6.00 1.00 3.00

Slovak Republic 10.00 4.00 6.00 1.00 3.00

Slovenia 4.00 7.00 2.00 2.00 2.00

Spain 15.00 3.00 11.00 1.00 4.00

Sweden 5.00 14.00 2.00 1.00 2.00

United Kingdom 5.00 12.00 2.00 1.00 2.00

Table 2 Results of sensitivity analysis

Vector of fixed points αc βc
x1 βc

x2 αl βl αr βr R2
pseudo

[−20 −10 0 10 20] 2.168 0.557 −0.173 1.087 0.019 1.553 0.232 0.819
[−40 −20 0 20 40] 2.325 0.545 −0.182 1.085 0.019 1.549 0.233 0.818
[−60 −30 0 30 60] 2.356 0.542 −0.184 1.085 0.019 1.548 0.233 0.818
[−80 −40 0 40 80] 2.367 0.542 −0.184 1.085 0.019 1.548 0.233 0.818
[−100 −50 0 50 100] 2.373 0.541 −0.185 1.085 0.019 1.548 0.233 0.818
[−120 −60 0 60 120] 2.375 0.541 −0.185 1.085 0.019 1.547 0.233 0.818

4.2 Results

In Table 3 we report the estimated values for the fuzzy components of unemployment rate
2011, the regression coefficients are described in Table 4 whereas the fit indices are shown
in Table 5.

Unemployment rate 2011 seems to be positively related to the unemployment rate for the
previous year (βc

x1 = 0.54) and inversely related to employment rate (βc
x2 = −0.18). Left

spread does not show a relation with the independent variables (βl = 0.02) whereas the right
spread seems to be moderately related to the predictor variables (βr = 0.23). The model had
a good global fit: about of 82 % of total information was reproduced by the model estimated
together with a low degree of model’s entropy.
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Fig. 2 Sensitivity analysis: pattern of stability for the regression parameters. On the horizontal axis are
represented the 20 steps for the parameter space considered whereas on the vertical one are represented the
range of the values for each parameter

Moreover, in order to evaluate the regression coefficients obtained we performed a boot-
strap procedure with 5,000 re-sampled (see Table 6). From the t-test values and the confidence
intervals obtained, the significant parameters are βc

x1, αl , αr and βr .

4.3 Comments and suggestions

By considering an economic point-of-view, these results seems to confirm the so-called added
workers effect that can be explained by the following facts:

– As unemployment increases, the likelihood of being fired also increases and this stimulates
job search activity by previously inactive individuals (Lundberg 1985).

– In the event of the payment of unemployment benefits, this can act an incentive for workers
to improve the quality of their job search, by enabling them to refuse the early jobs firms
offer them in the event these jobs are not in line with their skills or expectations. As a
consequence of the increasing number of individuals searching a job, the unemployment
rate at least in a short term perspective increases.

– Being unemployed causes, among other consequences, a loss of psychological well-being
due to the loss of self esteem and esteem in society as a whole. Being employed is therefore
supposedly preferable to the state of unemployment. This means that labour is not a pure
dis-utility and hence that people prefers job search to inactivity (Spencer 2004). As a
result, particularly in a condition of high unemployment, the increase of labour supply
increases the unemployment rate.

In sum, unemployment for 2011 increased its values by increasing of the unemployment
for 2010 and by decreasing of the employment for 2011, moreover it seemed to be a decreasing

123



3412 E. Ciavolino, A. Calcagnì

Table 3 Estimated components
for unemployment rate 2011

c∗ l∗ r∗

Austria 1.06 1.11 1.79

Belgium 3.97 1.16 2.47

Czech Republic 3.06 1.14 2.26

Denmark 2.14 1.13 2.04

Estonia 7.39 1.23 3.27

Finland 3.05 1.14 2.26

France 4.33 1.17 2.55

Germany 2.14 1.13 2.04

Greece 7.06 1.22 3.19

Hungary 5.98 1.20 2.94

Ireland 7.05 1.22 3.19

Italy 4.71 1.18 2.64

Luxembourg 2.17 1.13 2.05

Netherlands 0.68 1.10 1.71

Norway 0.14 1.09 1.58

Poland 4.88 1.18 2.68

Portugal 4.87 1.18 2.68

Slovak Republic 7.05 1.22 3.19

Slovenia 3.25 1.15 2.30

Spain 9.93 1.28 3.86

Sweden 2.49 1.13 2.13

United Kingdom 2.86 1.14 2.21

Table 4 Regression coefficients
for the study of unemployment
rate 2011

αc βc
x1 βc

x2 αl βl αr βr

2.37 0.54 −0.18 1.08 0.02 1.55 0.23

Table 5 Model statistics
R2

pseudo Entropy ratio

0.82 0.18

Table 6 Bootstrap results for the
study of unemployment rate 2011

Mean Standard
error

T test value Bootstrap confidence
intervals

αc 2.08 2.71 0.77 [−1.8447 to 6.4429]

βc
x1 0.57 0.28 2.03 [0.1638 to 0.997]

βc
x2 −0.17 0.17 −0.95 [−0.4653 to 0.0845]

αl 0.97 0.38 2.54 [0.6248 to 1.2267]

βl 0.04 0.10 0.35 [0 to 0.1553]

αr 1.51 0.17 8.82 [1.4943 to 1.5817]

βr 0.24 0.06 4.30 [0.2235 to 0.2506]
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trend for the unemployment predicted albeit this result is associated with a wide total spread
(see for example the case of Spain in Table 3). From a decision-making point of view, seems to
exist a considerable uncertainty about the classification of some countries (particularly, Spain,
Estonia, Greece, Slovak Republic) in the low or middle level of the fuzzy unemployment scale.

5 Conclusion and further remarks

In this article we proposed a novel fuzzy regression model based on the rationale of the GME
approach. Firstly, we discussed the main features of this approach of estimation, afterwards
we described the GME fuzzy regression model. The proposed regression model was based on
the well-known generative fuzzy regression models (D’Urso 2003) because of their simplic-
ity and flexibility. We also describe two goodness of fit indices for the model, based on the
principles of the entropy measure. In order to evaluate the features of our regression model,
we described an economic case study based on a well-known economic model about employ-
ment and unemployment in OECD area (period 2010–2011). The results together with some
suggestions about the case study were also described. In addition, in order to evaluate the
stability of the results, we also performed a sensitivity analysis on the support vectors of the
model’s parameters. The parameters estimated were stable by varying their support space
from [−10 −5 0 5 10] to [−200 −100 0 100 200]. A bootstrap procedure was also carried
out in order to evaluate the significance of the estimations obtained. Therefore, the results
for the case study suggested us how the unemployment for 2011 is directly related to the
unemployment for the previous year and it is inversely to the employment rate for the same
year. Moreover, these results seems to confirm the so-called added workers effect theory.

In sum, this contribution would describe a novel approach to fuzzy regression model by
taking the advantages of the GME estimator. In line with the results obtained, further works
could extend the GME approach for more complex fuzzy regression models (e.g., fuzzy-
input/fuzzy-output) as well as the develop of a comparative study with the traditional method
of estimations.

Further studies should include simulation experiments in order to evaluate the impact of
the number of independent variables, multicollinearity, missing data and outliers on the global
performance of the model. Moreover, other developments could take into account models
capable to interact with prior information or beliefs of the researches, by considering, cross-
entropy based models (CE models) and weighted-entropy based models (WE models).
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